An Analysis of Vibrations and Currents for Broken Rotor Bar Detection in Three-phase Induction Motors
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Selecting the physical property capable of representing the health state of a machine is an important step in designing fault detection systems. In addition, variation of the loading condition is a challenge in deploying an industrial predictive maintenance solution. The robustness of the physical properties to variations in loading conditions is, therefore, an important consideration. In this paper, we focus specifically on squirrel cage induction motors and analyze the capabilities of three-phase current and five vibration signals acquired from different locations of the motor for the detection of Broken Rotor Bar generated in different loads. In particular, we examine the mentioned signals in relation to the performance of classifiers trained with them. Regarding the classifiers, we employ deep conventional classifiers and also propose a hybrid classifier that utilizes contrastive loss in order to mitigate the effect of different variations. The analysis shows that vibration signals are more robust under varying load conditions. Furthermore, the proposed hybrid classifier outperforms conventional classifiers and is able to achieve an accuracy of 90.96% when using current signals and 97.69% when using vibration signals.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault detection, Vibration signals, deep conventional classifiers, Three-phase Induction Motors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.