State of Health and Lifetime Prediction of Lithium-ion Batteries Using Self-learning Incremental Models
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Lithium-ion batteries are key energy storage elements in the context of environmental-aware energy systems representing a crucial technology to achieve the goal of zero carbon emission. Therefore, its conditions must be monitored to guarantee the safe and reliable operation of the systems that use these components. Furthermore, lithium-ion batteries’ prognostics and health management policies must cope with the nonlinear and time-varying nature of the complex electrochemical dynamics of battery degradation. This paper proposes an incremental-learning-based algorithm to estimate the State of Health (SoH) and the Remaining Useful Life (RUL) of lithium-ion batteries based on measurement data streams. For this purpose, a two-layer framework is proposed based on incremental modeling of the SoH. In the first layer, a set of representative features are extracted from voltage and current data of partial charging and discharging cycles; these features are then used to train the proposed model in a recursive procedure to estimate the battery’s SoH. The second layer uses the capacity data for incremental learning of an Autoregressive (AR) model for the SoH, which will be used to propagate the battery’s degradation through time to make the RUL prediction. The proposed method was applied to two datasets for experimental evaluation, one from CALCE and another from NASA. The proposed framework was able to estimate the SoH of 8 different lithium-ion cells with an average percentage error below 1.5% for all scenarios, while the lifetime model predicted the cell’s RUL with a maximum average error of 25%.
How to Cite
##plugins.themes.bootstrap3.article.details##
Remaining Useful Life, State of Health, Prediction, Autoregressive model, Lithium-ion batteries
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.