Prediction of Production Line Status for Printed Circuit Boards
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper focuses on the problem of predicting production line status for Printed Circuit Boards (PCBs). The problem contains three prediction tasks regarding PCB producing process. Firstly, data exploration is carried out and it reveals several data challenges, including data imbalance, data noise, small sample size, and component difference. To predict production line status for components of PCBs using records of inspection on pins, we proposed two possible feature extraction methods to compress the pin-level data into component-level. A statistical feature extraction method, which retrieves descriptive statistics such as mean, standard deviation, maximum, and minimum of pins on the same component, is applied to Task 1, while a PinNumber-based feature extraction method, which keep original values for 2-pin components, is applied to Task3. In addition, a neural-net model with feeding imbalance control is established for Task 1. and a random forests model is applied for both Task 2 and Task 3. Moreover, a threshold moving technique is proposed to optimize the threshold selection. Finally, the result shows that our models achieved f1-scores of 0.44, 0.54, and 0.71 on the test set for the three tasks, respectively.
How to Cite
##plugins.themes.bootstrap3.article.details##
Printed Circuit Board, Machine Learning, Data Imbalance
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of Machine Learning Research, 12, 2825-2830.
Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 6(1), 20-29.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
Provost, F. (2000, July). Machine learning from imbalanced data sets 101. In Proceedings of the AAAI’2000 workshop on imbalanced data sets (Vol. 68, No. 2000, pp. 1-3). AAAI Press.
Maloof, M. A. (2003, August). Learning when data sets are imbalanced and when costs are unequal and unknown. In ICML-2003 workshop on learning from imbalanced data sets II (Vol. 2, pp. 2-1).
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.