Atomic Whispers to System Health Diagnosis and Prognosis: First-Principles-Based Degradation Modeling of 2D Materials in Next-Generation Bioelectronics

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Yi Cao Paulette Clancy

Abstract

Our results demonstrate that Cr intercalation into 2D transition metal dichalcogenide materials will significantly elevate the interlayer shear resistance, acting as an atomic-scale "glue" that mitigates delamination and structural failure—a key degradation mechanism. We uncover dynamic stabilization mechanisms and quantify the energy barriers that retard lateral sliding, which are crucial inputs for physics-of-failure models. We combine ab initio density functional theory (DFT) and machine-learned-force-field Molecular Dynamics (MLFF-MD) for this study. Leveraging MLFFs allows us to extend our simulations to larger length- and time-scales and hence capture long-term dopant dynamics and degradation evolution. MLFF-MD has the advantage of combining a bigger scope with near-DFT accuracy, enhancing predictive capabilities for materials design.

This work provides mechanistic insight into transition metal intercalation for 2D material's stabilization and offers a physics-informed computational framework for assessing material longevity and reliability. Such predictive capabilities are critical for proactive Prognostics and Health Management (PHM), enabling the rational design of robust 2D heterostructures, guiding synthesis strategies, and informing maintenance protocols for advanced electronic and spintronic devices.

How to Cite

Cao, Y., & Clancy, P. (2025). Atomic Whispers to System Health Diagnosis and Prognosis: First-Principles-Based Degradation Modeling of 2D Materials in Next-Generation Bioelectronics. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4532
Abstract 0 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Density functional theory (DFT), Molecular Dynamics (MD), Machine-learned force fields (MLFF), 2D materials, Doping engineering

References
Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., . . . Xue, Q.-K. (2013, April). Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science, 340(6129), 167–170. Retrieved 2024- 12-24, from https://www.science.org/doi/ full/10.1126/science.1234414 (Publisher: American Association for the Advancement of Science) doi: 10.1126/science.1234414
Geim, A. K., Grigorieva, I. V. (2013, July). Van der Waals heterostructures. Nature, 499(7459), 419–425. Retrieved 2025-03-17, from https://www.nature .com/articles/nature12385 (Publisher: Nature Publishing Group) doi: 10.1038/nature12385
Lemme, M. C., Akinwande, D., Huyghebaert, C., Stampfer, C. (2022, March). 2D materials for future heterogeneous electronics. Nature Communications, 13(1), 1392. Retrieved 2025-01-17, from https://www.nature.com/articles/ s41467-022-29001-4 (Publisher: Nature Publishing Group) doi: 10.1038/s41467-022-29001-4
Momeni, K., Ji, Y., Wang, Y., Paul, S., Neshani, S., Yilmaz, D. E., . . . Chen, L.-Q. (2020, March). Multiscale computational understanding and growth of 2D materials: a review. npj Computational Materials, 6(1), 1–18. Retrieved 2025-05-11, from https://www.nature .com/articles/s41524-020-0280-2 (Pub lisher: Nature Publishing Group) doi: 10.1038/s41524 -020-0280-2
Novoselov, K. S., Mishchenko, A., Carvalho, A., Castro Neto, A. H. (2016, July). 2D materials and van der Waals heterostructures. Science, 353(6298), aac9439. Retrieved 2025-02- 26, from https://www.science.org/doi/10 .1126/science.aac9439 (Publisher: American Association for the Advancement of Science) doi: 10.1126/science.aac9439
Roy Chowdhury, P., Shi, J., Feng, T., Ruan, X. (2021, January). Prediction of Bi2 Te3 -Sb2 Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 13(3), 4636–4642. Retrieved 2025- 03-10, from https://pubs.acs.org/doi/10 .1021/acsami.0c17851 doi: 10.1021/acsami .0c17851
Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schutt, K. T., . . . Muller, K.-R. (2021, August). Machine Learning Force Fields. Chemical Reviews, 121(16), 10142–10186. Retrieved 2025- 05-15, from https://doi.org/10.1021/acs .chemrev.0c01111 (Publisher: American Chemical Society) doi: 10.1021/acs.chemrev.0c01111
Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B. (2001, October). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597–602. Retrieved 2024-12-30, from https://www.nature.com/articles/ 35098012 (Publisher: Nature Publishing Group) doi: 10.1038/35098012
Wang, Q., Jiang, M., Liu, B., Wang, Y., Zheng, Y., Song, S., . . . Feng, S. (2016, August). Reversible Phase Change Characteristics of Cr-Doped Sb2Te3 Films with Different Initial States Induced by Femtosecond Pulses. ACS Applied Materials & Interfaces, 8(32), 20885–20893. Retrieved 2024-10-21, from https://doi.org/ 10.1021/acsami.6b06667 (Publisher: American Chemical Society) doi: 10.1021/acsami.6b06667
Zeni, C., Pinsler, R., Zugner, D., Fowler, A., Horton, M., Fu, X., . . . Xie, T. (2025, March). A generative model for inorganic materials design. Nature, 639(8055), 624–632. Retrieved 2025-05-19, from https://www.nature.com/articles/ s41586-025-08628-5 (Publisher: Nature Publishing Group) doi: 10.1038/s41586-025-08628-
Section
Doctoral Symposium Summaries