Adaptable and Generic Methods for Monitoring and Prognostics of Energy Assets
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Murat Yildirim
Abstract
Monitoring and prognostics of energy assets are crucial for maintaining their reliability and efficiency. Effective monitoring ensures that potential issues are identified early, preventing unexpected failures and optimizing maintenance schedules. However, several challenges complicate this process in real-world scenarios, including poor data quality, low-fidelity and sparse data, the influence of external environmental factors, and diverse operating conditions and asset types. These challenges highlight the need for adaptable and generic solutions that can handle variability and complexity across different energy systems. This Ph.D. project aims to address these challenges by developing scalable, data-driven approaches for monitoring and prognostics. By focusing on creating adaptable and generic frameworks, the research seeks to provide robust solutions for real-world monitoring and prognostic problems for energy assets.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics, Autonomous Monitoring, Maintenance Planning, Energy Assets
Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained optimization learning: A survey. arXiv preprint arXiv:2103.16378.
Nejjar, I.,Wang, Q., & Fink, O. (2023). Dare-gram: Unsupervised domain adaptation regression by aligning inverse gram matrices. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 11744–11754).
Sadana, U., Chenreddy, A., Delage, E., Forel, A., Frejinger, E., & Vidal, T. (2024). A survey of contextual optimization methods for decision-making under uncertainty. European Journal of Operational Research.
Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. In Computer vision–eccv 2016 workshops: Amsterdam, the netherlands, october 8-10 and 15-16, 2016, proceedings, part iii 14 (pp. 443–450).
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.