Fault Detection and Diagnosis in Tennessee Eastman Process with Deep Autoencoder

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2023
Zhongying Xiao Arthur Kordon Subrata Sen

Abstract

Data-driven modeling has been considered as an attractive approach for fault detection in chemical processes.   Of special interest to industry are methods that represent nonlinear phenomena and detect complex faults. In this paper, a semi-supervised deep learning method - deep autoencoder for fault detection in Tennessee Eastman Process (TEP) is proposed. The TEP process is a simulated benchmark for evaluating process control and monitoring methods. The performance of the proposed method is evaluated and compared to Principal Component Analysis (PCA). The experimental results demonstrate that the proposed optimized five-layers DAE model for fault detection outperforms the standard PCA. Of special importance to real-world applications is its capability for automatic variable selection. In comparison to PCA it demonstrated higher prediction accuracy for most of the generated faults. Deep autoencoder has the potential to become an excellent approach for process monitoring and fault detection in chemical processes.

How to Cite

Xiao, Z., Kordon, A., & Sen, S. (2023). Fault Detection and Diagnosis in Tennessee Eastman Process with Deep Autoencoder. Annual Conference of the PHM Society, 15(1). https://doi.org/10.36001/phmconf.2023.v15i1.3578
Abstract 196 | PDF Downloads 133

##plugins.themes.bootstrap3.article.details##

Keywords

Deep Autoencoder, Deep Learning, Tennessee Eastman Process, Fault Detection, Process Monitoring, Automatic Variable Selection

References
Cheng, F., He, Q. P., & Zhao, J. (2019). A novel process monitoring approach based on variational recurrent autoencoder. 129. https://doi.org/10.1016/j.compchemeng.2019.106515

Chiang, L. H., Kotanchek, M. E., & Kordon, A. K. (2004). Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2003.10.002

Chiang, L. H., Russell, E. L., & Braatz, R. D. (2000a). Fault detection and diagnosis in industrial systems. Springer Science & Business Media.

Chiang, L. H., Russell, E. L., & Braatz, R. D. (2000b). Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 50(2), 243–252. https://doi.org/https://doi.org/10.1016/S0169-7439(99)00061-1

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245–255. https://doi.org/https://doi.org/10.1016/0098-1354(93)80018-I

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
He, Q. P., Qin, S. J., & Wang, J. (2005). A new fault diagnosis method using fault directions in Fisher discriminant analysis.

AIChE Journal, 51(2), 555–571. https://doi.org/10.1002/aic.10325

He, Q. P., & Wang, J. (2011). Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes. AIChE Journal, 57(1), 107–121. https://doi.org/10.1002/aic.12247

Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine, 51(18), 470–475. https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.380

Heo, S., & Lee, J. H. (2019). Statistical Process Monitoring of the Tennessee Eastman Process Using Parallel Autoassociative Neural Networks and a Large Dataset. Processes, 7(7). https://doi.org/10.3390/pr7070411

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504 LP – 507. https://doi.org/10.1126/science.1127647

Jiang, L., Ge, Z., & Song, Z. (2017). Semi-supervised fault classi fi cation based on dynamic Sparse Stacked auto-encoders model. Chemometrics and Intelligent Laboratory Systems, 168(June), 72–83. https://doi.org/10.1016/j.chemolab.2017.06.010

Joe Qin, S. (2003). Statistical process monitoring: basics and beyond. Journal of Chemometrics, 17(8‐9), 480–502. https://doi.org/doi:10.1002/cem.800

Khan, A. A., Moyne, J. R., & Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control, 18(10), 961–974. https://doi.org/https://doi.org/10.1016/j.jprocont.2008.04.014

Kramer, M. A. (1991). Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. 37(2), 233–243.

Kresta, J. V, Macgregor, J. F., & Marlin, T. E. (1991). Multivariate statistical monitoring of process operating performance. The Canadian Journal of Chemical Engineering, 69(1), 35–47. https://doi.org/10.1002/cjce.5450690105

Kruger, U., & Dimitriadis, G. (2008). Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE Journal, 54(10), 2581–2596. https://doi.org/10.1002/aic.11576

Kulkarni, A., Jayaraman, V. K., & Kulkarni, B. D. (2005). Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Computers & Chemical Engineering, 29(10), 2128–2133. https://doi.org/https://doi.org/10.1016/j.compchemeng.2005.06.006

Lee, J.-M., Yoo, C., Choi, S. W., Vanrolleghem, P. A., & Lee, I.-B. (2004). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59(1), 223–234. https://doi.org/https://doi.org/10.1016/j.ces.2003.09.012

MacGregor, J. F., Jaeckle, C., Kiparissides, C., & Koutoudi, M. (1994). Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 40(5), 826–838. https://doi.org/10.1002/aic.690400509

Mahadevan, S., & Shah, S. L. (2009). Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control, 19(10), 1627–1639. https://doi.org/https://doi.org/10.1016/j.jprocont.2009.07.011

Qi, Y., Shen, C., Wang, D., Shi, J., Jiang, X., & Zhu, Z. (2017). Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery. IEEE Access, 5, 15066–15079. https://doi.org/10.1109/ACCESS.2017.2728010

Qin, S. J., & Chiang, L. H. (2019). Advances and opportunities in machine learning for process data analytics. 126, 465–473. https://doi.org/10.1016/j.compchemeng.2019.04.003

Qu, Y., He, M., Deutsch, J., & He, D. (2017). Detection of Pitting in Gears Using a Deep Sparse Autoencoder. Applied Sciences, 7(5). https://doi.org/10.3390/app7050515

Reddy, K. K., Sarkar, S., Venugopalan, V., & Giering, M. (2016). Anomaly Detection and Fault Disambiguation in Large Flight Data: A Multi-modal Deep Auto-encoder Approach. Phm, (i), 1–8. https://doi.org/10.1039/c0Ob00047g

Sakurada, M., & Yairi, T. (2014). Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. Proceedings of the MLSDA 2014 2Nd Workshop on Machine Learning for Sensory Data Analysis, 4:4--4:11. https://doi.org/10.1145/2689746.2689747

Taqvi, S. A., Tufa, L. D., Zabiri, H., Maulud, A. S., & Uddin, F. (2018). Fault detection in distillation column using NARX neural network. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3658-z

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis: Part III: Process history based methods. Computers & Chemical Engineering, 27(3), 327–346. https://doi.org/https://doi.org/10.1016/S0098-1354(02)00162-X

Wise, B. M., Ricker, N. L., Veltkamp, D. F., & Kowalski, B. R. (1990). Theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1(1), 41–51.

Wu, H., & Zhao, J. (2018). Deep convolutional neural network model based chemical process fault diagnosis. Computers and
Chemical Engineering, 115, 185–197. https://doi.org/10.1016/j.compchemeng.2018.04.009

Xie, D., & Bai, L. (2016). A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process. Proceedings - 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015, 745–748. https://doi.org/10.1109/ICMLA.2015.208

Yélamos, I., Escudero, G., Graells, M., & Puigjaner, L. (2009). Performance assessment of a novel fault diagnosis system based on support vector machines. Computers & Chemical Engineering, 33(1), 244–255. https://doi.org/https://doi.org/10.1016/j.compchemeng.2008.08.008

Yin, S., Ding, S. X., Haghani, A., Hao, H., & Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 22(9), 1567–1581. https://doi.org/10.1016/j.jprocont.2012.06.009

Zhang, Z., & Zhao, J. (2017). A deep belief network based fault diagnosis model for complex chemical processes. Computers and Chemical Engineering, 107, 395–407. https://doi.org/10.1016/j.compchemeng.2017.02.041

Zhao, W., Meng, Q. H., Zeng, M., & Qi, P. F. (2017). Stacked sparse auto-encoders (SSAE) based electronic nose for chinese liquors classification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122855

Zhu, Z.-B., & Song, Z.-H. (2011). A novel fault diagnosis system using pattern classification on kernel FDA subspace. Expert Systems with Applications, 38(6), 6895–6905. https://doi.org/https://doi.org/10.1016/j.eswa.2010.12.034
Section
Industry Experience Papers