A Hybrid Model-Based and Data-Driven Framework for Automated Spacecraft Fault Detection



Published Oct 26, 2023
Eric Pesola Ksenia Kolcio Maurice Prather Adrian Ildefonso


Traditional fault management can be an onerous task and robust automated solutions are increasingly necessary to accommodate the complexities of modern space systems and mission operations. The present work proposes a hybrid framework for performing automated spacecraft fault detection by leveraging the benefits of both model-based and data-driven approaches. The framework uses a system model to generate residual data that are subsequently fed into a data-driven residual analysis stage. The framework was verified by using data from a hardware-in-the-loop test campaign in which faults were injected into a spacecraft attitude control system, and successfully identified. The fault detection approach implemented using this framework outperformed results obtained from expert-tuned fault detection parameters. Overall, the proposed framework is a promising alternative for sustainable fault detection and mission operations suitable for complex space systems.

How to Cite

Pesola, E., Kolcio, K., Prather, M., & Ildefonso, A. (2023). A Hybrid Model-Based and Data-Driven Framework for Automated Spacecraft Fault Detection. Annual Conference of the PHM Society, 15(1). https://doi.org/10.36001/phmconf.2023.v15i1.3461
Abstract 317 | PDF Downloads 239



fault management, health monitoring, machine learning, model-based systems engineering

Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data, 10(1), 1–51. doi: 10.1145/2733381

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3), 1-58. doi: 10.1145/1541880.1541882

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.BMC Genomics, 21(6), 1–13. doi: 10.1186/s12864 -019-6413-7

Djebko, K., Puppe, F., & Kayal, H. (2019). Modelbased fault detection and diagnosis for spacecraft with an application for the sonate triple cube nanosatellite. Aerospace, 6(10), 105. doi: 10.3390/ aerospace6100105

Gao, Y., Yang, T., Xu, M., & Xing, N. (2012). An unsupervised anomaly detection approach for spacecraft based on normal behavior clustering. In Proceedings of the Fifth International Conference on Intelligent Computation Technology and Automation (p. 478-481). doi: 10.1109/ICICTA.2012.126

Gertler, J. (1991). Analytical Redundancy Methods in Fault Detection and Isolation - Survey and Synthesis. IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes, 24(6), 9-21. doi: 10.1016/S1474-6670(17)51119-2

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., & Soderstrom, T. (2018). Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (p. 387-395). doi: 10.1145/3219819.3219845 Isermann, R. (2005). Model-based fault-detection and diagnosis – status and applications. Annual Reviews in Control, 29(1), 71-85. doi: 10.1016/j.arcontrol.2004

Jung, D., Ng, K. Y., Frisk, E., & Krysander, M. (2018). Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation. Control Engineering Practice, 80, 146-156. doi: 10.1016/j.conengprac.2018.08.013

Jung, D., & Sundstrom, C. (2019). A Combined Data-Driven and Model-Based Residual Selection Algorithm for Fault Detection and Isolation. IEEE Transactions on Control Systems Technology, 27(2), 616-630. doi:

Khorasgani, H., Farahat, A., Ristovski, K., Gupta, C., & Biswas, G. (2018). A framework for unifying modelbased and data-driven fault diagnosis. In Proceedings of the Annual Conference of the PHM Society (p. 1-10).
doi: 10.36001/phmconf.2018.v10i1.530

Kolcio, K., & Fesq, L. (2016). Model-based off-nominal state isolation and detection system for autonomous fault management. In Proceedings of IEEE Aerospace Conference (p. 1-13). doi: 10.1109/AERO.2016.7500793

Kolcio, K., & Prather, M. (2023). Implementation and evaluation of model-based health assessment for spacecraft autonomy. In Proceedings of IEEE Aerospace Conference. doi: 10.1109/AERO55745.2023.10116001

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under Concept Drift: A Review.
IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363. doi: 10.1109/TKDE.2018 .2876857

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., Akoglu, L. (2021). A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. IEEE Transactions on Knowledge and Data Engineering. doi: 10.1109/TKDE.2021.3118815

Marzat, J., Piet-Lahanier, H., Damongeot, F., & Walter, E(2012). Model-based fault diagnosis for aerospace systems: A survey. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace
Engineering, 226(10), 1329-1360. doi: 10.1177/ 0954410011421717

McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. The Journal of Open Source Software, 2(11). doi: 10.21105/joss.00205

Minnotte, M. C., & Scott, D. W. (1993). The Mode Tree: A Tool for Visualization of Nonparametric Density Features. Journal of Computational and Graphical
Statistics, 2(1), 51-68. doi: 10.1080/10618600.1993.10474599

Mukai, R., Towfic, Z., Danos, M., Shihabi, M., & Bell, D. (2020). MSL telecom automated anomaly detection. In Proceedings of IEEE Aerospace Conference (p. 1-6). doi: 10.1109/AERO47225.2020.9172573

Nalepa, J., Myller, M., Andrzejewski, J., Benecki, P., Piechaczek, S., & Kostrzewa, D. (2022). Evaluating algorithms for anomaly detection in satellite telemetry data. Acta Astronautica, 198, 689-701. doi: 10.1016/j.actaastro.2022.06.026

Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys, 54(2), 1–38. doi: 10.1145/3439950

Park, B. U., & Marron, J. S. (1990). Comparison of DataDriven Bandwidth Selectors. Journal of the American Statistical Association, 85(409), 66–72. doi: 10.2307/ 2289526

Park, K. H., Park, E., & Kim, H. K. (2021). Unsupervised Fault Detection on Unmanned Aerial Vehicles: Encoding and Thresholding Approach. Sensors, 21(6). doi: 10.3390/s21062208

Shriram, S., & Sivasankar, E. (2019). Anomaly detection on shuttle data using unsupervised learning techniques. In Proceedings of International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (p. 221-225). doi: 10.1109/ICCIKE47802.2019.9004325

Slimani, A., Ribot, P., Chanthery, E., & Rachedi, N. (2018). Fusion of Model-based and Data-based Fault Diagnosis Approaches. IFAC-PapersOnLine, 51(24), 1205-1211. doi: 10.1016/j.ifacol.2018.09.698

Tidriri, K., Chatti, N., Verron, S., & Tiplica, T. (2016). Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges. Annual Reviews in
Control, 42, 63-81. doi: 10.1016/j.arcontrol.2016.09.008

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention isAll you Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems
(p. 6000–6010). doi: 10.48550/arXiv.1706.03762

Yu, J., Song, Y., Tang, D., Han, D., & Dai, J. (2021). Telemetry data-based spacecraft anomaly detection with spatial–temporal generative adversarial networks. IEEE Transactions on Instrumentation and Measurement,70, 1-9. doi: 10.1109/TIM.2021.3073442

Zimek, A., Campello, R. J., & Sander, J. (2014). Ensembles for Unsupervised Outlier Detection: Challenges and Research Questions. ACM SIGKDD Explorations Newsletter, 15(1), 11–22. doi: 10.1145/2594473.2594476
Technical Research Papers