Fault Detection via Sparsity-based Blind Filtering on Experimental Vibration Signals
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The detection of incipient rolling element bearing faults is a challenging task since the impulsive pattern of bearing faults often fades into the noise. Moreover, tracking the health conditions of rotating machinery generally requires the characteristic frequencies of the components of interest, which can be a cumbersome constraint for large industrial applications because of the extensive number of machine components. One recent method proposed in literature addresses these difficulties by aiming to increase the sparsity of the squared envelope spectrum of the vibration signal via blind filtering. As the name indicates, this method requires no prior knowledge about the machine. Sparsity measures of Hoyer index, l2 l1 - norm, and spectral negentropy are optimized in the blind filtering approach using generalized Rayleigh quotient iteration. Even though the proposed method has demonstrated a promising performance, it has only been applied to vibration signals of an academic experimental test rig. This paper focuses on the real-world performance of the sparsitybased blind filtering approach on a complex industrial machine. One of the challenges is to ensure the numerical stability and the convergence of the generalized Rayleigh quotient optimization. Enhancements are thus made by identifying a quasi-optimal filter parameter range within which blind filtering tackles these issues. Finally, filtering is applied to certain frequency ranges in order to prevent the blind filtering optimization from getting skewed by dominant deterministic healthy signal content. The outcomes prove that sparsitybased blind filters are effective in tracking rolling element bearing faults on real-world rotating machinery without any prior knowledge of characteristic frequencies.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault detection, sparsity, blind filtering, bearing, condition monitoring
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.