Distributed Adaptive Fault-Tolerant Consensus Control of Multi-Agent Systems with Actuator Faults

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 18, 2015
Mohsen Khalili Xiaodong Zhang Yongcan Cao Jonathan A. Muse

Abstract

This paper presents an adaptive fault-tolerant control (FTC) scheme for leader-follower consensus control of uncertain mobile agents with actuator faults. A local FTC component is designed for each agent in the distributed system by using local measurements and certain information exchanged between neighboring agents. Each local FTC component consists of a fault detection module and a reconfigurable controller module comprised of a baseline controller and an adaptive fault-tolerant controller activated after fault detection. Under certain assumptions, the closed-loop system stability and leader-follower consensus properties of the distributed system are rigorously established. A simulation example is used to illustrate the effectiveness of the FTC method.

How to Cite

Khalili, M. ., Zhang, X. ., Cao, Y. ., & A. Muse, J. . (2015). Distributed Adaptive Fault-Tolerant Consensus Control of Multi-Agent Systems with Actuator Faults. Annual Conference of the PHM Society, 7(1). https://doi.org/10.36001/phmconf.2015.v7i1.2678
Abstract 181 | PDF Downloads 163

##plugins.themes.bootstrap3.article.details##

Keywords

fault-tolerant control, reconfigurable control, actuator fault, diagnosis, PHM

References
Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2006). Diagnosis and fault-tolerant control. Berlin: Springer.

Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2004, April). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243– 255.

Emami-Naeini, A., Akhter, M. M., & Rock, S. M. (1988). Effect of model uncertainty on failure detection: the threshold selector. IEEE Transactions on Automatic Control, 33, 1106–1115.

Farrell, J., & Polycarpou, M. M. (2006). Adaptive approximation based control. Hoboken, NJ: J. Wiley.

Ferrari, R., Parisini, T., & Polycarpou, M. M. (2012). Distributed fault detection and isolation of large-scale discrete-time nonlinear systems: An adaptive approximation approach. IEEE Transactions on Automatic Control, 57(2), 275–790.

Ioannou, P. A., & Sun, J. (1996). Robust adaptive control. Englewood Cliffs, NJ: Prentice Hall.

Keliris, C., Polycarpou, M. M., & Parisini, T. (2013). A distributed fault detection filtering approach for a class of interconnected continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 58(8), 2032– 2047.

Khalili, M., Zhang, X., Polycarpou, M. M., Parisini, T., & Cao, Y. (2015). Distributed adaptive fault-tolerant control of uncertain multi-agent systems. Technical Report, Department of Electrical Engineering, Wright State University.

Li, Z., Duan, Z., Chen, G., & Huang, L. (2010). Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 213– 224.

Li, Z., Ren, W., Liu, X., & Fu, M. (2012). Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Transactions on Automatic Control, 58(7), 1786–1791.

Olfati-Saber, R., & Murray, R. M. (2004, September). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

Pipattanasomporn, M., Feroze, H., & Rahman, S. (2009). Multi-agent systems in a distributed smart grid: Design and implementation. In Ieee/pes power systems conference and exposition.

Rajamani, R. (1998, March). Observers for lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 43(3), 397–401.

Ren, W., & Atkins, E. (2007). Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 17(10/11), 1002-1033.
Ren, W., & Beard, R. (2008). Distributed consensus in multivehicle cooperative control: Theory and applications. London, U.K.: Springer-Verlag.

Ren, W., & Beard, R. W. (2004, January). Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics, 27(1), 73–82.

Shames, I., Teixeira, A. M., Sandberg, H., & Johansson, K. H. (2011). Distributed fault detection for interconnected second-order systems. Automatica, 47, 2757–2764.

Yan, X., & Edwards, C. (2008). Robust decentralized actuator fault detection and estimation for large-scale systems using a sliding-mode observer. International Journal of Control, 81(4), 591–606.

Yu, W., Chen, G., & Cao, M. (2011). Consensus in directed networks of agents with nonlinear dynamics. IEEE Transactions on Automatic Control, 56(6), 1436– 1441.

Yu, W., Chen, G., Cao, M., & Kurths, J. (2010). Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3), 881–891.

Zhang, X., Parisini, T., & Polycarpou, M. M. (2004, August). Adaptive fault-tolerant control of nonlinear systems: a diagnostic information-based approach. IEEE Transactions on Automatic Control, 49(8), 1259–1274.
Section
Technical Research Papers