References
Antoni, J. (2007a). Cyclic spectral analysis of rollingelement bearing signals: Facts and fictions. Journal of Sound and Vibration, 304(3-5), 497–529. doi:
10.1016/j.jsv.2007.02.029
Antoni, J. (2007b). Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 21, 108–124. doi: 10.1016/j.ymssp.2005.12.002
Antoni, J. (2009). Cyclostationarity by examples (Vol. 23) (No. 4). doi: 10.1016/j.ymssp.2008.10.010
Bechhoefer, E., Schlanbusch, R., &Waag, T. I. (2016). Techniques for Large, Slow Bearing Fault Detection. International Journal of Prognostics and Health Management, 7(1), 1–12.
He, M., He, D., & Bechhoefer, E. (2016). Using Deep Learning Based Approaches for Bearing Fault Diagnosis with AE Sensors. In Annual conference of the prognostics and health management society (pp. 1–10).
Hecke, B. V., Yoon, J., & He, D. (2016). Low speed bearing fault diagnosis using acoustic emission sensors. APPLIED ACOUSTICS, 105, 35–44. doi:
10.1016/j.apacoust.2015.10.028
Jeffrey, L. (2012). Noble 2012 Analyst & Investor Day presentation.
Kilundu, B., Chiementin, X., Duez, J., & Mba, D. (2011). Cyclostationarity of Acoustic Emissions (AE) for monitoring bearing defects. Mechanical
Systems and Signal Processing, 2061–2072. doi: 10.1016/j.ymssp.2011.01.020
Qu, Y., Bechhoefer, E., He, D., & Zhu, J. (2013). A New Acoustic Emission Sensor Based Gear Fault Detection Approach. International Journal of Prognostics and Health Management, 4, 1–14.
Randall, R. B., & Antoni, J. (2011). Rolling element bearing diagnostics-A tutorial. Mechanical Systems and Signal Processing, 25(2), 485–520. doi:
10.1016/j.ymssp.2010.07.017
Yoshioka, T., & Fujiwara, T. (1982). A new acoustic emission source locating system for the study of rolling contact fatigue. Wear, 81(1), 183–186.
Yoshioka, T., & Fujiwara, T. (1984). Application of acoustic emission technique to detection of rolling bearing failure. American society of mechanical engineers, 14(1), 55–76.
Copyright Information
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.