Integrated Sensor Arrays based on PiezoPaintTM for SHM Applications

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Karl Elkjaer Konstantin Astafiev Erling Ringgaard Tomasz Zawada

Abstract

Recent progress in development of new functional materials that are flexible and can be processed at very low temperatures (below 100 °C) opens a new opportunity for applications, such as non-destructive evaluation (NDE), or structural health monitoring (SHM) by applying active materials directly on the structures made out of a variety of materials, e.g. metals (aluminium), plastics, and polymers, including CFRP (Carbon Fibre Reinforced Polymer). This paper presents sensor arrays based on a flexible piezoelectric material – PiezoPaintTM. The newly developed material exhibits relatively high sensitivity (d33 coefficient up to 45 pC/N), extremely low processing temperatures (< 120 °C), and high compliance in the cured state, enabling direct deposition of acoustic/vibration sensor arrays on structures to be monitored by means of screen- or pad- printing. The printed sensors have been applied for impact detection where four-element arrays and a fully integrated wiring system has been deposited directly on aluminium as well as CFRP plates. The presented results show very good performance in terms of sensitivity, flexibility of usage, and ultra-low weight, making PiezoPaintTM technology an attractive alternative for SHM particularly in aerospace applications.

How to Cite

Elkjaer, K. ., Astafiev, K. ., Ringgaard, E. ., & Zawada, T. . (2013). Integrated Sensor Arrays based on PiezoPaintTM for SHM Applications. Annual Conference of the PHM Society, 5(1). https://doi.org/10.36001/phmconf.2013.v5i1.2274
Abstract 28 | PDF Downloads 27

##plugins.themes.bootstrap3.article.details##

Keywords

piezoelectric sensor, SHM, sensor array, integrated sensor, impact detection, acoustic sensor

References
Arlt, K., & Wegener, M., (2010), Piezoelectric PZT/PVDF- copolymer 0-3 composites: Aspects on film preparation and electrical poling, Dielectrics and Electrical Insulation, IEE Transactions, 17 (4), 1178-1184, Doi: 10.1109/TDEI.2010.5539688

Baskar Rao, M., Bhat, M.R., Murthy, C.R.L., Venu Madhav, K., & Asokan, S., (2006). Structural health monitoring (SHM) using strain gauges, PVDF film and fiber bragg grating (FBG) sensors: A comparative study, Proc. National Seminar on Non-Destructive Evaluation, Dec.7-9, Hyderabad.

Hillger, W., Szewieczek, A., Schmidt, D., Sinapius, M., Jorge Aldave, I., Venegas Bosom, P. & Vega Gonzalez, L. (2012). Advanced NDT techniques for damage detection in a honeycomb composite helicopter tailboom, Proc. on 5th International Conference on Emerging Technologies of Non-Destructive Testing (ETNDT5), Ioannina, Greece, 19th – 21st September 2011

Kim, H., DeFrancisci, G., Chen, Z. M., Rhymer, J., Funai, S., Delaney, M., Fung, S., Le, J., & White, S., (2012) Impact damage formation on composite aircraft structures, UCSD FAA JAMS Paper, Project Description Paper Supporting Presentation Given at Federal Aviation Administration JAMS 2012 Technical Review Meeting 5 April 2012, Baltimore, MD

Liu, Y., & Nayak, S., (2012). Structural health monitoring: State of the art and perspectives, JOM 64 (7), 789-792, Doi: 10.1007/s11837-012-0370-9

Omote, K., Ohigashi, H., & Koga, K., (1997). Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copolymer, J. Appl. Phys., 81, 2760-2769. Doi: 10.1063/1.364300

Patwari, N., Ash, J. N., Kyperountas S., Hero III, A. O., Moses, R. L., & Correal, N. S., (2005). Locating the nodes: Cooperative localization in wireless sensor networks, IEEE Signal Processing Magazine, 22 (4), 54-69. Doi: 10.1109/MSP.2005.1458287

Payo, I. & Hale, J.M., Dynamic characterization of piezoelectric paint sensors under biaxial strain, (2010). Sensors and Actuators A, 163, 150-158, Doi: 10.1016/j.sna.2010.08.005

Raghavan, A., & Cesnik, E. S., (2007). Review of guided- wave structural health monitoring, The Shock and Vibration Digest, 39 (2), 91-114. Doi: 10.1177/0583102406075428

Ringgaard, E., Zawada, T., Porchez, T., Bencheikh, N., & Claeyssen, F., (2011) Multi-element piezo-composite transducers for structural health monitoring using Lamb waves, Proc. on 5th International Conference on Emerging Technologies of Non-Destructive Testing (ETNDT5), Ioannina, Greece, 19th – 21st September 2011

Schäfer, F., & Janovsky, R., (2007). Impact sensor network for detection of hypervelocity impacts on spacecraft, Acta Astronautica, 61, 901-911, Doi: 10.1016/j.actaastro.2007.02.002

Silva, M. P., Costa, C. M., Sencadas, V., Paleo, A. J., & Lanceros-Méndez, S., (2011). Degradation of the dielectric and piezoelectric response of β- poly(vinylidene fluoride) after temperature annealing, Journal of Polymer Research, 18 (6), 1451-1457. Doi: 10.1007/s10965-010-9550-x

Staszewski, W. J., Worden, K., Wardle, R., & Tomlinson, G. R. (2000). Fail-safe sensor distributions for impact detection in composite materials. Smart Materials and Structures, 9 (3), 298-303. Doi:10.1088/0964- 1726/9/3/308

Yang, K., An, J., & Xu, Z. (2008), A quadratic constraint total least-squares algorithm for hyperbolic location, I.J. Communications, Network and System Sciences, 2, 130-135. Doi: 10.4236/ijcns.2008.12017.
Section
Technical Papers