Reformulation for the Diagnosis of Discrete-Event Systems

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Alban Grastien Gianluca Torta

Abstract

Diagnosis is traditionally defined on a space of hypotheses (typically, all the combinations of zero or more possible faults).In the present paper, we argue that a suitable reformulation of this hypothesis space can lead to more efficient diagnostic algorithms and more compact diagnoses, most notably by exploiting opportunities for various forms of model abstraction. We also study several formal properties related to the correctness and precision of the diagnoses obtained through reformulation.

How to Cite

Grastien, A. ., & Torta, . G. . (2010). Reformulation for the Diagnosis of Discrete-Event Systems. Annual Conference of the PHM Society, 2(2). https://doi.org/10.36001/phmconf.2010.v2i1.1947
Abstract 13 | PDF Downloads 21

##plugins.themes.bootstrap3.article.details##

Keywords

DES, Reformulation, Abstraction

References
(Benveniste et al., 2005) A. Benveniste, St. Haar, E ́. Fabre, and Cl. Jard. Distributed monitoring of concurrent and asynchronous systems. Journal of Discrete Event Dynamical Systems (JDEDS), 15(1):33–84, 2005.

(Branda ́n Briones et al., 2008) L. Branda ́n Briones, A. Lazovik, and Ph. Dague. Optimal observability for diagnosability. In Proc. DX-08, pages 31–38, 2008.

(Cassandras and Lafortune, 1999) Ch. Cassandras and St. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic Publishers, 1999.

(Cordier and Dousson, 2000) M.-O. Cordier and Ch. Dousson. Alarm driven monitoring based on chronicles. In Proc. SafeProcess-00, pages 286–291, 2000.

(Cordier et al., 2007) M.-O. Cordier, Y. Pencole ́, L. Trave ́-Massuye`s, and Th. Vidal. Self-healablity = diagnosability + repairability. In Proc. DX-07, pages 251–258, 2007.

(Grastien and Anbulagan, 2009) A. Grastien and An- bulagan. Incremental diagnosis of DES with a non- exhaustive diagnosis engine. In Proc. DX-09, pages 345–352, 2009.

(Je ́ron et al., 2006) Th. Je ́ron, H. Marchand, S. Pinchinat, and M.-O. Cordier. Supervision patterns in discrete-event systems diagnosis. In Proc. DX-06, pages 117–124, 2006.

(Krysander and Nyberg, 2008) M. Krysander and M. Nyberg. Statistical properties and design criterions for fault isolation in noisy systems. In Proc. DX-08, pages 101–108, 2008.

(Pencole ́ et al., 2006) Y. Pencole ́, D. Kamenetsky, and A. Schumann. Towards low-cost diagnosis of component-based systems. In Proc. SafeProcess- 06, 2006.

(Perrot and Trave ́-Massuye`s, 2007) F. Perrot and L. Trave ́-Massuye`s. Choosing abstractions for hierarchical diagnosis. In Proc. DX-07, pages 354–360, 2007.

(Sachenbacher and Struss, 2005) M. Sachenbacher and P. Struss. Task-dependent qualitative domain abstraction. Artificial Intelligence (AIJ), 162(1–2):121–143, 2005.

(Sampath et al., 1995) M. Sampath, R. Sengupta, St. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control (TAC), 40(9):1555–1575, 1995.

(Torta and Torasso, 2008) G. Torta and P. Torasso. A symbolic approach for component abstraction in model-based diagnosis. In Proc. DX-08, pages 355– 362, 2008.
Section
Technical Papers