WaveNet based Autoencoder Model: Vibration Analysis on Centrifugal Pump for Degradation Estimation.
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Centrifugal pumps are versatile and have been used in a wide range of applications such as agricultural services, wastewater services, and other industrial services. The mechanism behind the pump is converting rotational kinetic energy to induce flow or raise pressure of liquid. Boiler feedewater pump (BFP) is an important piece of equipment in a thermal power generation plant. Generally, the cost of the pump itself only account less than 20% of its life cost and about 30% - 35% of the life cost spend on pump operation and maintenance. Therefore, it is important to understand the degradation status of the pumping system for optimizing the operational procedures and maintenance schedule to reduce the cost. Traditionally, engineers evaluate the performance and/or find faults by observing the vibrational signal on the pump, specifically, looking at the power spectrum density of the vibrational signal measured on different locations of the pump. However, such vibration analysis requires substantial domain knowledge and experience to accommodate all the variables caused by various conditions like different models, sizes in different plants, units and facilities. Often Vibration Analyst have to bin the vibration signal according to a predetermined frequency bins and potentially removing useful markers about vibration health.
This paper presents a novel way of conducting vibration analysis on pumps to determine the degradation trend, without requiring expert domain knowledge by extracting useful information using a WaveNet based autoencoder on the historical vibration data. WaveNet is known for processing raw audio data and building generative models. Unlike recurrent neural network (RNN), WaveNet is capable of handling much longer sequential data, which is very suitable for high frequency signals like sound and vibration signals. The autoencoder model extract essential information for reconstructing the input data. The embeddings from the autoencoders can represent the characteristics of the input data. Combining the two techniques, we were able to compress the vibration data 12x and extract the embeddings from raw vibration data and use them to estimate the degradation status of pumps. We pre-selected a collection of vibration data from pumps under “normal” condition. The degradation trend is estimated by computing the distance of the embeddings from “normal” data to new inputs. Such model provides additional information on pump condition vis-a-vis vibration data with no prior domain knowledge. This technique can assist decision making and reduce costs from improper operation and maintenance.
How to Cite
##plugins.themes.bootstrap3.article.details##
Autoencoder, Wavenet, Degradation, Centrifugal Pump
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.