Distributed Diagnosis of Electric Aircraft Powertrain
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Electrically powered autonomous aircraft are being increasingly considered for intra-city short-haul air-taxi services to fly human passengers between different locations. As a result, it is critical to incorporate safety under autonomous operations into system operations by enabling such autonomous aircraft to make accurate estimates of its current health state and take the right decisions to complete its mission successfully. The first step to assess health state of the entire aircraft is for the aircraft to be able to assess the health of its individual critical systems, (e.g electrical powertrain) for it to be able to fly and reach its destination in a safe manner. The fundamental components of a powertrain in an electrically powered aircraft include key electrical components such as batteries, motors, and power electronics (e.g., electronic speed controllers). A model-based diagnosis approach of complex critical systems enables their safe and efficient operation. Typically, such model-based schemes are centralized approaches that suffer from inherent disadvantages such as computational complexity, single point of failure, and scalability issues. Distributing the diagnosis task addresses these issues. To this end, this paper presents the results of implementing a distributed diagnostics approach to a representative electric aircraft powertrain. In particular, we focus on the implementation of a distributed diagnosis framework to a quadrotor vehicle. The simulation experiments demonstrate how the distributed diagnosis algorithm correctly and efficiently diagnose faults in the rotorcraft’s electric powertrain.
How to Cite
##plugins.themes.bootstrap3.article.details##
Quadcopter, Distributed Diagnosis, Electric Powertrain, Fault Detection
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.