A Bayesian assessment for railway track geometry degradation prognostics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Advanced PHM techniques have the potential to substantially reduce railway track maintenance costs while increasing safety and availability. However, there is still a significant lack of knowledge and experience in relation to suitable PHM models and algorithms within the context of railway track geometry degradation. This paper proposes a Bayesian model class methodology for prognostics performance assessment whereby different prognostics algorithms can be rigorously assessed and ranked according to their relative probability to predict the future degradation process. The proposed framework is exemplified and tested for a case study about track degradation prognostics using published data about track settlement, taken from a simulated traffic loading experiment carried out at the Nottingham Railway Test Facility.
How to Cite
##plugins.themes.bootstrap3.article.details##
Railway track prognostics, Model-based prognostics
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.