Sensor positioning and thermal model for condition monitoring of pressure gas reservoirs in vehicles
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Passively acting safety relevant systems, e.g. automatic fire extinguishing systems or brakes, rely on the availability of compressed gases as acting medium and energy storage. Due to the safety relevance of these systems, it is necessary to monitor the condition of these elements continuously. However this task is difficult due to the partly abrupt changes in environmental temperature due to tunnel crossings and the interrelation of temperature and pressure in gases. As further the direct measurement of the gas temperature is difficult and costly, it is desirable to use external sensors to estimate the average gas temperature while at the same time avoiding false positives as not to reduce availability of the subsystems.
For this reason, the present paper analyses the behavior of a cylindrical pressure reservoir during changes in the environment temperature. The gas under consideration is Nitrogen under a pressure of approximately $200\,\mathrm{bar}$ at $15\,^{\circ}\mathrm{C}$.
Aiming to identify a dynamical model of the gas temperature, different temperature profiles were simulated while measuring gas-pressure and temperatures in two locations within the gas reservoir as well as on the cylinder wall.
From the recorded data, a dynamical model is identified which expresses the relation between environmental and mean gas temperature. The estimated gas temperature from this system model is used to determine a reference pressure which can be compared to the observed pressure. In case of any mass flow from the reservoir, the error grows and an error can be triggered.
The model was developed using temperature curves resembling true operational curves simulated in a climatic chamber. The detection and classification behaviour was tested using computer simulations.
How to Cite
##plugins.themes.bootstrap3.article.details##
Pressure vessel, Condition monitoring, Temperature shock
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.