Automated Failure Diagnosis in Aviation Maintenance Using Explainable Artificial Intelligence (XAI)
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
An incorrect or incomplete repair card, typically used in aviation maintenance for reporting failures, may result in incorrect maintenance and make it very hard to analyse the maintenance data. There are several reasons for this incomplete reporting. Firstly, (part of) the information is often unknown at the moment the maintenance crew fills in the card. Also, the findings on repair cards are generally filled out as freeform text, making it difficult to automatically interpret the findings. An automatically assessed failure description will lead to more complete and consistent repair cards. This will
also improve the efficiency of troubleshooting since this failure diagnosis can add information which would otherwise not be at the disposal of the maintenance crew at that time. This research will utilise a data driven approach combining maintenance and usage data. The model will be based on Artificial Intelligence (AI) such that it is no longer necessary to completely understand the physics of a (sub)system or component. XAI (eXplainable AI) will be added to the model to provide transparency and interpretability of the assessed diagnosis. The different steps towards this failure diagnosing
model are applied to a case study with a main wheel of the RNLAF (Royal Netherlands Air Force) F-16. This preliminary feasibility study already showed the value of this automated failure diagnosis model with an improvement in diagnosis accuracy from 60% to 69%
How to Cite
##plugins.themes.bootstrap3.article.details##
aviation maintenance, explainable artificial intelligence, data driven, automated failure diagnosis, AI
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.