Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Predictive maintenance is essential for complex industrial systems to foresee anomalies before major system faults or ultimate breakdown. However, the existing efforts on Industry 4.0 predictive monitoring are directed at semi-supervised anomaly detection with limited robustness for large systems, which are often accompanied by uncleaned and unlabeled data. We address the challenge of predicting anomalies through data-driven end-to-end deep learning models using early warning symptoms on multivariate time series sensor data. We introduce AnoP, a long multi-timestep anomaly prediction system based on unsupervised attention-based causal residual networks, to raise alerts for anomaly prevention. The experimental evaluation on large data sets from detector health monitoring of the Hadron Calorimeter of the CMS Experiment at LHC CERN demonstrates the promising efficacy of the proposed approach. AnoP predicted around 60% of the anomalies up to seven days ahead, and the majority of the missed anomalies are abnormalities with unpredictable noisy-like behavior. Moreover, it has discovered previously unknown anomalies in the calorimeter’s sensors.
How to Cite
##plugins.themes.bootstrap3.article.details##
Anomaly Prediction, Data-driven, Deep learning, multivariate time series sensor data, Causal residual networks,
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.