Toward Runtime Assurance of Complex Systems with AI Components
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
AI components (e.g., Deep Neural Networks) are increasingly used in safety-relevant aerospace applications. Rigorous Verification and Validation (V&V) is mandatory for such components, yet V&V techniques for DNNs are still in their infancy and can often only provide relatively weak guarantees. In this paper, we will present a runtime-monitoring architecture, which combines the advanced statistical analysis framework SYSAI (System Analysis using Statistical AI) with temporal and probabilistic runtime monitoring carried out by R2U2 (Realizable, Responsive, and Unobtrusive Unit). We will present initial results of our tool set and architecture on a case study, a DNN-based autonomous centerline tracking system (ACT).
How to Cite
##plugins.themes.bootstrap3.article.details##
AI, Deep Neural Networks, runtime-monitoring architecture, System Analysis, Statistical AI)
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.