Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Early and accurate detection of rolling element bearing faults in rotating machinery is important for minimizing production downtime and reducing unnecessary preventative maintenance. Several fault detection methods based on signal processing and machine learning methods have been proposed. Particularly, supervised, data-driven approaches have proved to be very effective for fault detection and diagnostics of rolling element bearings. However, supervised methods rely heavily on the availability of failure data with volume, variety and veracity, which is mostly unavailable in industry. As an alternative data-driven strategy, unsupervised methods are trained on healthy data only and do not require any failure data.
In contrast to supervised and un-supervised data-driven models, physics-based and phenomenological models are based on domain knowledge and not on historical data. Although these models are useful for studying the way in which damage is expected to manifest in a measured signal, they are difficult to calibrate and often lack the fidelity required to model reality. In this paper, an unsupervised data-driven anomaly detection method that exploits informative domain knowledge is proposed. Hereby, the versatility of unsupervised data-driven methods are combined with domain knowledge.
In this approach, supplementary training data is generated by augmenting healthy data towards its possible future faulty state based on the characteristic bearing fault frequencies. Both healthy and augmented squared envelope spectrum data is used to train an autoencoder model that includes regularisation designed to constrain the latent features at the autoencoder bottleneck. Regularisation in the autoencoder loss enforces that the expected deviation of the healthy latent representation towards the augmented latent representation at dam aged conditions, is constrained to be maximally different for different fault modes. Consequently, the likelihood of a new test sample being healthy can be evaluated based on the projection of the sample onto an expected failure direction in the latent representation.
A phenomenological and experimental dataset is used to demonstrate that the addition of augmented training data and a specialized autoencoder loss function can create a separable latent representation that can be used to generate interpretable health indicators.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault detection, unsupervised data-driven methods, domain knowledge, bearings
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.