Automating Critical Surface Identification and Damage Detection Using Deep Learning and Perspective Projection Methods
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
With an increased collection of data, assessing the health of an asset and designing recommendations or executing response actions via prognostics and health management (PHM) has made great advances. These actions can be corrective or preventive depending upon the risk of failure or the cost of repair. As downhole testing tools operate in extreme environments, they are subjected to conditions like elevated temperature, shocks, vibrations, and pressures. The dump mandrels used in the process are prone to wear and tear like scratches, pits, and corrosion, which may cause operational failure. If these damages and their degree goes undetected and no remedial actions are taken, possibilities of non-productive time (NPT) and financial losses increase drastically. This paper aims to develop a fitness inspector which uses Computer Vision and Deep Learning to identify critical surfaces of these tools and the damage within them. This will help the Subject Matter Experts (SMEs) by replacing the qualified workforce provided by them and reducing the time consumed to gauge the health status of all the tools as the diagnosis can be made in real-time.
How to Cite
##plugins.themes.bootstrap3.article.details##
Critical Surface Identification, Damage Detection, Deep Learning, Computer Vision
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.