Novel Graph-Based Features for Bearing Fault Diagnosis: Two Aspects of Time Series Structure
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The feature-based methods for bearing fault diagnosis in prognostics and health management have been achieved satisfactory performances because of their robustness to noise and reduced dimension by pre-defined features. However, widely employed time- and frequency-domain features are insufficient to recognize the global pattern that indicates the structure of a time-series instance. In this paper, we propose two novel graph-based features which reflect the connection strength and degree of time series, respectively. First, we construct a graph of which an edge is defined as the Euclidean distance between each pair of time steps to measure the strengths of connections between the nodes. The other graph is constructed by the visibility algorithm, which converts a time series into a complex network to reflect the degrees of connections. Then, we calculate the Frobenius norms of the adjacency matrices of both graphs and use them as features for bearing fault diagnosis. To verify the proposed features, we performed several experiments with both synthetic and real datasets. From the synthetic datasets, it is observed that the changes in amplitudes and frequencies are detected by the features for the connection strength and degree, respectively. In addition, the proposed features also well-separate the distributions of each bearing state, including normal and several fault types, and show significant performance improvement as applied to the fault diagnosis task.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault Diagnosis, Bearing, Prognostics
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.