Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics and Health Management, Data Challenge, Machine Learning, AI in Production, Printed Circuit Boards
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.