A Deep Support Vector Data Description Method for Anomaly Detection in Helicopters
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Helicopters are high-value mechanical assets which has gained much attention from condition monitoring practitioners. Modern helicopter health management system leverages various sensors to collect in-flight signals. In order to trigger the alarm when an anomaly happens, signal processing methods are used to construct health indicators that require expert knowledge. On the other hand, classic features are always case-specific and may fail to discriminate anomalous in practical applications. Support Vector Data Description (SVDD) is a machine learning method used as a one-class classifier to serve anomaly detection tasks. It utilizes healthy samples to construct a hyper-sphere feature space as a detection threshold. In order to automate the anomaly detection pipeline, a deep SVDD model is proposed in this paper. A Convolution Neural Network (CNN) is used as the feature extractor, which provides smart features to an SVDD model. The SVDD model uses a soft-boundary hyper-sphere for decision-making. The optimization of the CNN and the SVDD is connected, which makes it an end-to-end process. The methodology is applied, tested and evaluated on a helicopter vibration dataset, which has been provided by Airbus SAS in the frames of AI Gym challenge. The experimental results reveal that the F1 score of the proposed Deep SVDD can reach 94%, showing its compelling efficacy for anomaly detection.
How to Cite
##plugins.themes.bootstrap3.article.details##
Deep learning, Anomaly detection, Support Vector Data Description, Condition monitoring, Deep SVDD
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.