A Probabilistic Similarity Based Modeling Approach for Turbomachine Fault Prediction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Faults in the critical components of a turbomachine usually result in unplanned outage, leading to huge loss of properties and life. Condition monitoring becomes a promising tool to provide automatic early alerting of potential damage in critical components thus ensuring the system safety and reliability while lowering its maintenance cost. This is still a challenging hot topic due to the data imperfection and multivariate correlation, as well as the variation of faults and components in different turbomachines. This paper presents an enhanced generic probabilistic similarity-based method to address these challenges in fault prediction of large turbomachines. Bayesian wavelet multi-scale decomposition is proposed to address the potential noise in the sensed multivariate time historical data. The advanced signal processing balances the over-denoising and under-denoising of raw multivariate signals. An optimized auto-associative kernel regression (OAKR) approach is developed to represent the healthy status of the turbomachine system and further predict its responses under unknown status. The band width of the kernel function in the method is optimized through Nelder-Mead simplex algorithm. The alerting threshold based on the squared mean errors of the predicted and measured time series is adjusted automatically through a rolling window strategy. A comparison study is conducted to demonstrate the effectiveness and feasibility of the proposed methodology by using the real-world data and events collected from a centrifugal compressor.
How to Cite
##plugins.themes.bootstrap3.article.details##
Bayesian wavelets, OAKR, turbomachine, fault prediction
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.