Evaluating word representations in a technical language processing pipeline
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The recent explosion of advancements in natural language processing (NLP) are encouraging in the industrial sector for leveraging the volumes of unstructured, technical data that currently sit unused. However, results from direct application of many NLP pipelines to technical text often fail to address the business needs of industrial companies. One requirement for satisfactory performance is an effective representation of the unstructured text in a form which containstheinformationrequiredforanapplicationtask. We know of no standard methodology for evaluating word representations for technical text tailored to industry needs. In this paper, we propose guidance and methods for evaluating the performance of word representations for industrial use-cases.
How to Cite
##plugins.themes.bootstrap3.article.details##
NLP, text, word representation, industrial language
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.