Fault Detection and Condition Monitoring in District Heating Using Smart Meter Data
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Currently, large amounts of smart meter data are mainly used for billing purposes only, although they could also be valuable for decision support and business process optimization in customer service and maintenance. Therefore, this paper presents several relevant use cases for prognostics and health management based on a case study of a real meter data set of a medium-sized geothermal district heating network in southern Germany. First, we show the implementation of a machine learning algorithm for automatic fault detection. Our approach uses cluster analysis to categorize the different load cycles of a district heating substation and calculates a regression function between the demanded thermal energy and the outdoor temperature for each cluster. Thereby, the substation's control behaviour is learned and deviations due to a malfunction or failure can be detected in advance. In addition to the regression-based fault detection, we present two key performance indicators that can be computed relatively simple but resulting in very effective insights for condition monitoring and identifying substations with highly negative effects on the overall network. Our findings' correctness and usefulness were verified by the corresponding domain experts of the geothermal district heating company.
Finally, we provide an outlook on smart meter data's role for the further development of intelligent district heating networks and the realization of highly complex approaches such as smart grids. To foster future research, we provide exemplary our RapidMiner processes as well as some sample data.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault detection, condition monitoring, district heating, smart meter, machine learning, Efficiency increase
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.