Bearing health monitoring using optical fiber sensors
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Bearings are vital elements in rotating machinery. Failures in bearings can result in irreversible damage. Therefore, early detection of bearing damage and monitoring of fault severity are necessary for optimization of maintenance decisions.
The classical methods for bearing monitoring are based on analysis of vibration signals captured by accelerometers, usually located on the machine case. Two difficulties arise when diagnosing bearings in that manner. The first difficulty is the distortion of the signals due to the transmission path to the sensor. The second difficulty is the characteristic low signal to noise ratio, resulting from the weak bearing signals in the presence of the strong surrounding noise, originating from the vibrations of other rotating components in the machine.
The goal of the present study was to research the possibility of using an optical fiber sensor of the Fiber Bragg Grating (FBG) type, which senses strain and temperature changes, for bearing diagnostics. Due to its small dimensions, this sensor can be embedded close to, or even inside the bearing, suggesting a possible solution to the two difficulties which were discussed above.
The results of this study open new options to monitor and detect early failure signs in critical bearings. FBG-based diagnostics was found applicable and useful for detecting damage in bearings.
The analysis of signals measured on bearings with various widths of spall, demonstrates the power of the FBG-based local sensing methodology. In addition, the study also aimed to understand the capabilities and limitations of FBG for wideband sensing, and the effect of different sensor attaching techniques on the signal.
How to Cite
##plugins.themes.bootstrap3.article.details##
Bearing Health Monitoring, FBG sensors, wideband sensing
A Heng, S Zhang, A C Tan and J Mathew, „Rotating machinery prognostics,(2009): State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, vol. 23, no. 3, pp. 724–739, Apr.
N Sawalhi and R B Randall,(2008), Semi-automated bearing diagnostics – three case studies. School of Mechanical and Manufacturing Engineering. The University of New South Wales, Sydney, Australia.
A D Kersey, M A Davis, H J Patrick, M LeBlanc, K P Koo, C G Askins, M A Putnam and E J Friebele,(1997), Fiber Grating Sensors, Lightwave Technology, Journal of vol. 15, no. 8, August.
K Jones, C Staveley, JF Vialla, (2014), Condition monitoring of a subsea pump using fibre optic sensing , 23rd International Conference on Optical Fibre Sensors, Proc. of SPIE Vol. 9157, 91579Q
G Kogan, S Shaharabany, I Itzhak, J Bortman and R Klein, (2013), Towards Model Based Prognostics - Characterization of Fault Size in Bearings, Annual Conference of the PHM Society.
M Mendelovich, Y Sanders, G Kogan, M Battat, R Klein and J Bortman, (2014), Characterization of Fault Size in Bearings, Annual Conference of the PHM Society.
K C Gayan, J Epaarachchi, H Wang, and K T Lau, (2012),Use of FBG sensors for SHM in aerospace structures' Photonic Sensors 2, no. 3, 203-214.
A Othonos and K Kalli.,(1999), Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. Artech House.
D C Betz, G Thursby, B Culshaw and W J Staszewski, (2006),Advanced layout of a fiber Bragg grating strain gauge rosette, Lightwave Technology, Journal of vol.24, no.2, pp.1019,1026, February.
Acceleration/Vibration Tunable Lasers for Multichannel Fiber-Optic Sensors, Sensors Online, August 1.From: http://www.sensorsmag.com/sensors/acceleration-vibration/tunable-lasers-multichannel-fiber-optic-sensors-823
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.