Wireless Modular System for Vessel Engines Monitoring, Condition Based Maintenance and Vessel’s Performance Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Circumstances in shipping have rapidly changed within the past few years. The large increase of fuel cost, the decrease in the price of fares, the rapid progress in telecommunications, the crew reduction per vessel, the new environmental restrictions and the reinforcement of Green Shipping significance are facts that make remote monitoring and the evaluation of the vessel engines’ performance an imperative need. The challenges occurring from changing the typical vessel engine monitoring and maintenance model are many, such as: equipment installation on moving vessels, lack of long-term vessel availability, experienced and trained crew being on land, many different types or ages of vessel and vessel manufacturers.
An extremely advantageous solution with proven positive results for this specific matter is the use of monitoring systems consisting of wireless smart sensors. These systems provide flexibility, adaptability, scalability and easy installation. The only system of this kind available in the global market, adjusted for Shipping and specifically for monitoring vessel engines, is the LAROS platform by NOMIA S.A. (member of Prisma Electronics SA).
In this paper we will present the current status of maintenance in maritime vessels and the abovementioned new innovative remote monitoring of a vessel’s operational status electronic platform, which can greatly reduce the operational costs, enhance the operational vessel status and ensure the high quality of service a maritime company provides, as well as improve its environmental policy.
Moreover, a case study of performance analysis regarding a vessel with the LAROS platform on board will be presented, showing the possibilities and the dynamics of vessel performance monitoring.
How to Cite
##plugins.themes.bootstrap3.article.details##
CBM, wireless sensor networks, Shipping, Engine Performance, WSN, Novelty Detection
Cheng H., (2007). Implementation Strategies and Tools for Condition Based Maintenance at Nuclear Power Plants, (pages 1011–4289). International Atomic Energy Agency, IAEA-TECDOC-1551 (ISBN:92-0-103907-7)
Emmanouilidis C., Katsikas S., Pistofidis P. & Giordamlis C. (2009). A Wireless Sensing Development Platform for Ubiquitous Condition Monitoring. 22rd International Congress on Condition Monitoring and Diagnostic Engineering Management (pages 657-664), June 9- 11, San Sebastian, Spain. Fundacion TEKNIKER, Eibar, ISBN:978-84-932064-6-8
Holmberg K., Jantunen E., Adgar A., Mascolo J., Arnaiz A. & Mekid S. (2010). E-maintenance. Springer. ISBN 978-1-84996-204-9
Jardine A.K.S., LinD. & Banjevic D. (2005). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, volume 20 (Issue 7), pages 1483-1510. doi : 10.1016/j.ymssp.2005.09.012
Karl H. & Willig, A. (2003). A short survey of wireless sensor networks. TKN Technical Report TKN-03-018. Technical University Berlin, Telecommunication Networks Group.
Kdouh H., Brousseau C., Zaharia G., Grunfeleder G. & El Zein G. (2012). A Realistic Experiment of a Wireless Sensor Network on Board a Vessel. 9th International Conference on Communication COMM 2012 (pages 189-192 , June 21-23, Bucarest . doi: 10.1109/ICComm.2012. 6262594
Neelamkavil J., (2010). Condition-based Maintenance Management in Critical Facilities. Institute for Research in Construction, National Research Council Canada. Available from http://www.managementparadise.com/arunvani/documents/531/condition-based-maintenance-management-in-critical-facilities/ [Accessed 2014/03/05].
Thusu R., (2010). Wireless Sensor Use Is Expanding in Industrial Applications. Sensors Magazine. Available from http://www.sensorsmag.com/networking-communications/ wireless-sensor/wireless-sensor-use-is-expanding-industrial-applications-7212 [Accessed 2014/03/05]
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.