Refining Envelope Analysis Methods usingWavelet De-Noising to Identify Bearing Faults
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In the field of machine health monitoring, vibration analysis is a proven method for detecting and diagnosing bearing faults in rotating machines. One popular method for interpreting vibration signals is envelope-demodulation, which allows the maintainer to clearly identify an impulsive fault source and its severity. In some cases, in-band noise can make impulses associated with incipient faults difficult to detect and interpret. In this paper, we use Wavelet De-Noising (WDN) after envelope-demodulation to improve the accuracy of bearing fault diagnostics. This contrasts the typical approach of de-noising raw vibration signals prior to demodulation. We find that WDN removes low amplitude harmonics and spurious reflections which may interfere with FFT techniques to identify low-frequency peaks in the signal spectrum. When measuring impact frequencies in the time-domain using a peakthresholding method, the proposed algorithm exhibits increasingly confident periodicity at bearing fault frequencies.
How to Cite
##plugins.themes.bootstrap3.article.details##
bearing defect diagnosis, wavelet de-noising
Bozchalooi, I. S., & Liang, M. (2007, July). A combined spectral subtraction and wavelet de-noising method for bearing fault diagnosis. IEEE Proceedings of the 2007 American Control Conference, 2533-2538.
Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613-627.
Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425-455.
McFadden, P., & Smith, J. (1984). Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration, 96, 69-82.
Qui, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet filter-based weak signature detection method and its application on roller element bearing prognostics. Journal of Sound and Vibration, 289, 1066-1090.
Rioul, O., & Vetterli, M. (1991, October). Wavelets and signal processing. IEEE Signal Processing Magazine, 8(4), 14-38.
Waters, N., & Beaujean, P. (2013). Targeting faulty bearings for an ocean turbine dynamometer. International Journal of Prognostics and Health Monitoring, 4, 1-15.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.