Cure Monitoring of Composite Carbon/Epoxy through Electrical Impedance Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Composite materials are increasingly used in aeronautic; they offer many benefits such as mechanical strength, mass and consumption reduction. However, their process development needs to be known and controlled, in order to adjust the process parameters and optimize the characteristics of structures made from these materials. This paper is focused on impedance spectroscopy measurement and analysis technique to characterize material’s properties. In fact, the composites based on carbon fiber have electrical proprieties; therefore a three-dimensional modeling of the electrical conduction in the material is established by using a distributed allocation of an electrical resistance (RP) in parallel with a capacitance (CP). Then, thin electrodes (40 μm thick) are inserted inside the material and a specific impedance measurement bench is developed to perform real-time measurements of RP and CP on unidirectional (UD) mono-ply and multi-plies samples. During curing (in an oven) the change in values of both RP and CP in different stages of the curing cycle is showed. Then, problems that occur during the curing cycle (layup defect, loss of vacuum) were detected by a large gap of the measured electrical parameters in comparison with the ordinary case. Therefore, by this electrical measurement, we present a way to ensure an automated real-time monitoring of the composite curing process.
How to Cite
##plugins.themes.bootstrap3.article.details##
CFRP, Electrical modeling, Electrical impedance spectroscopy, cure monitoring
doi:10.1109/ELINSL.2002.995982
Inada, T., & Todoroki, A. (2005). Smart Cure Monitoring Method of Carbon/Epoxy Laminates using Electric Capacitance Change with Applied Alternating Current Frequency. Key Engineering Materials, Vols. 297-300, pp. 2903 - 2908. dio: 10.4028/www.scientific.net/KEM.297-300.2903
Shoukai, W., & Chung, D.D.L. (1999). Apparent negative electrical resistance in carbon fiber composites. Composites, Part B 30, pp. 579 - 590. dio: 10.1016/S1359-8368(99)00021-9
Joung-Man, P., Sang-Il, L., & Jin-Ho, C. (2005). Cure monitoring and residual stress sensing of single-carbon fiber reinforced epoxy composites using electrical resistivity measurement. Composites Science and Technology, Vol. 65, pp. 571–580. doi:10.1016/j.compscitech.2004.09.019
Marguerès, P., Camps, T., Viargues, M., & Olivier, P. (2013). Preliminary experimental study on the electrical impedance analysis for in-situ monitoring of the curing of carbon/epoxy composite material for aeronautical and aerospace structures. Meas. Sci. Technol, Vol. 24, 095005 (10pp). doi:10.1088/0957-0233/24/9/095005
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.