Duplex ball bearing outer ring deformation- Simulation and experiments
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper presents a research of deformations influence on duplex ball bearings dynamic behavior. Despite the common use of duplex ball bearings, bearings subcomponents deformations are not thoroughly investigated. In order to investigate these effects, this study integrates the outcome of a 3D dynamic model, developed for assessment of the defect pattern and experimental results from a full scale CH-53 Swashplate test rig. The ability to withstand high radial and bi-directional axial loads makes duplex bearings common in aircraft applications and specifically in helicopter rotors. The swashplate of the CH-53 is constructed of duplex angular contact ball bearings. Two spacers, internal between the static inner rings and external, between the rotating outer rings support the bearing rings. A structural defect is formed by a faulty external spacer, thus causing a lack of support to the top bearing and deformation of the outer rings. Model results indicate that the lack of support has a defect pattern in both radial and axial directions. Test rig data acquired by accelerometers was analyzed by several diagnostic techniques including order tracking, envelope analysis and dephased algorithm in order to recognize the simulated pattern.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault modeling, swashplate, duplex ball bearings
Kogan, G., Bortman, J., Kushnirsky, A. & Klein, R. (2012). Ball bearing modeling for faults simulation. The Ninth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies (no. 1, pp. 1–8).
Harris, T. A., & Kotzalas, M. N. (2007). Essential Concepts of Bearing Technology (Fifth Edit).USA: CRC Press.
Taylor, I. J. & Kirkland, D. W. (2004). The Bearing Analysis Handbook, USA: VCI
Bayoumi, A., Goodman, N., Shah, R., Roebuck, T., Jarvie, A. & Eisner, L. (2008). Conditioned-Based Maintenance at USC - Part III: Aircraft Components Mapping and Testing for CBM. The American Helicopter Society Specialists' Meeting on Condition Based Maintenance. Huntsville.
Klein, R., Rudyk, E., Masad, E. (2012) “Methods for diagnostics of bearings in non-stationary environment”, International Journal of Condition Monitoring
Blechertas, V., Bayoumi, A., Goodman, N., Shah, R. & Shin, Y. J., (2009). CBM Fundamental Research at the University of South Carolina: A Systematic Approach to U.S. Army Rotorcraft CBM and the Resulting Tangible Benefits. The American Helicopter Society Technical Specialists’ Meeting on Condition Based Maintenance. Huntsville.
Dempsey, P., Branning, J. & Arsenal, R. (2010). Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators. AHS 66th Annual Forum and Technology.
Budynas, R. & Nisbett, K. (2006). Shigley's Mechanical Engineering Design (Mcgraw-Hill Series in Mechanical Engineering). McGraw-Hill Science/Engineering/Math.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.