A multivariate statistical approach to the implementation of a health monitoring system of mechanical power drives

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 8, 2014
Alberto Bellazzi Giovanni Jacazio Bruno Maino Gueorgui Mihaylov Franco Pellerey

Abstract

The implementation in service of accelerometric health monitoring systems of mechanical power drives has shown that a considerable number of false failure alarms is generated. The paper presents a combined application of several multivariate statistical techniques and shows how a monitoring method which integrates these tools can be successfully exploited in order to improve the reliability of the diagnostic systems.

How to Cite

Bellazzi, A., Jacazio, G., Maino, B., Mihaylov, G., & Pellerey, F. (2014). A multivariate statistical approach to the implementation of a health monitoring system of mechanical power drives. PHM Society European Conference, 2(1). https://doi.org/10.36001/phme.2014.v2i1.1452
Abstract 749 | PDF Downloads 200

##plugins.themes.bootstrap3.article.details##

Keywords

helicopters, multivariate statistical analysis, mechanical power drives

References
A. Justel, R. Z., D. Pena. (1997). A multivariate Kolmogorov-Smirnov test of goodness of fit. Statistics and Probability Letters, 35(3), 251259.
CAA-PARER-2011/01. (2012). Intelligent management of helicopter vibration health monitoring data (Vol. 01 Based on a report prepared for the CAA by GE Aviation Systems Limited; Tech. Rep. No. ISBN 978 0 11792 403 1). Civil Aviation Authority - Safety Regulation Group.
C. M. Jarque, A. K. B. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163172.
Epps, T.W. (1993). Characteristic functions and their empirical counterparts: Geometrical interpretations and applications to statistical inference. The American Statistician, DOI:10.1080/00031305.1993.10475930, 47(1), 33-38.
Ferrell, B. L. (1979). Multivariate analysis. Academic Press (Probability and Mathematical Statistics).
Gniazdowski, Z. (2013). Geometric interpretation of a correlation. Zeszyty Naukowe Warszawskiej Wyzszej Szkoly Informatyki(9, Rok 7), 27-35.
Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification, and manifold learning. Springer (Springer Texts in Statistics).
K. Liu, J. S., N. Gebraeel. (2013). A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis. IEEE T. Automation Science and Engineering, 3(10), 652-664.
Kolmogorov, A. (1936). Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari(4), 83-91.
Ramasso, E., & Gouriveau, R. (2010). Prognostics in switching systems: Evidential Markovian classification of real-time neuro-fuzzy predictions. In Ieee international conference on prognostics and system health management, macau, hong-kong, jan. 12-14.
Randall, R. B. (2011). Vibration-based condition monitoring - industrial, automotive and aerospace applications. John Wiley and Sons, Ltd. Publications.
Rencher, A. C. (2002). Methods of multivariate analysis. Wiley Interscience (Wiley Series in Probability and Statistics).
Shewhart, W. A. (1931). Economic control of quality of manufactured product. David Van Nostrand.
Shewhart, W. A. (1986). Statistical method from the viewpoint of quality control. Dover Publications.
Timm, N. H. (2002). Applied multivariate analysis. Springer (Springer Texts in Statistics).
Tyurin, Y. N. (2009). Multivariate statistical analysis: A geometric perspective. arXiv:0902.0408.
Wickens, T. D. (Ed.). (1995). The geometry of multivariate statistics. Lawrence Erlbaum Associates, Incorporated.
W. K. H¨ardle, L. S. (2012). Applied multivariate statistical analysis 3rd ed. Springer.
Section
Posters

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.