Application of Microwave Sensing to Blade Health Monitoring
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper discusses the application of microwave sensing to turbine airfoil health monitoring. The proposed microwave system operates at 6- and 24-GHz and is applicable to both blade tip-clearance and blade tip-timing measurements. One of the main advantages of microwave systems, compared to other technology such as capacitive or eddy current, is that it can be installed for long term operations in the harsh environment of the first turbine stages. The monitoring of blade tip-timing and tip-clearance pattern is useful for detecting abnormal blade behavior due to structural damage. Such a sensing system can also be used in actively maintaining optimal blade-to-casing clearance, thereby enhancing turbine efficiency. This paper presents blade tip-clearance pattern monitoring based on microwave measurements. First, a laboratory study shows the ability of the system to consistently measure tip clearance pattern. Then tip clearance pattern measurements from a real engine test are presented. While this paper presents results from system testing on tip clearance, it is expected that this study will be carried forward in the next phase to demonstrate tip-timing measurement and further, to show how such as system can form the basis for a more comprehensive health management system.
How to Cite
##plugins.themes.bootstrap3.article.details##
gas turbines, diagnostics and prognostics, Blade Health Monitoring, Microwave sensing, clearance
Flotow, A., Mercadal, M., & Tappert, P. (2000). Health monitoring and prognostics of blades and disks with blade tip sensors. Aerospace Conference Proceedings, IEEE, Mar 18-25, Big Sky, MT, USA.
Hess, A., Frith, P., & Suarez E. (2006). Challenges, issues, and lessons learned implementing prognostics for propulsion systems. Proceedings of ASME Turbo Expo 2006, May 8-11, Barcelona, Spain.
Hess, A. (2007). Prognostics and health management: The cornerstone of autonomic logistics. (Downloaded from http://www.acq.osd.mil/log/mpp/senior_steering/condition/Hess%20PHM%20Brief.ppt)
Holst, T. A. (2005). Analysis of spatial filtering in phase-based microwave measurements of turbine blade tips” Master’s thesis, Georgia Institute of Technology, Atlanta, GA, USA.
Kwapisz, D., Hafner, M., & Queloz, S. (2010). Calibration and characterization of a CW radar for blade tip clearance measurement. Proceedings of the 7th Euro-pean Radar Conference, September 30 - October 1, Paris, France.
Kwapisz, D., Hafner, M., Spitsyn, V., Mykhaylov, A., Berezhnoy, V. (2011). Test and validation of a microwave tip clearance sensor on a 25MW gas turbine engine. Proceedings of the XVI International Congress of Propulsion Engineering, September 14-19, Rybache, Ukraine.
Martin R., Forry, D., Maier, S., & Hansen, C. (2011). GE’s Next 7FA Gas Turbine “Test and Validation” (Downloaded from http://www.ge-energy.com/content/ multimedia/_files/downloads/GEA18457A_7FA_GI_7-27-11_r1.pdf)
SAE (2012). Airfoil diagnostics with blade tip sensors for operating turbomachinery, SAE Aerospace Information Report, AIR5136, Sep 2012.
Woike, M. R., Abdul-Aziz, A., Bencic, T. J. (2010). A microwave blade tip clearance sensor for propulsion health monitoring, AIAA-2010-3308. (Downloaded from http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa. gov/20100025863_2010028113.pdf)
Zielinski, M., Ziller, G. (2005). Noncontact blade vibration measurement system for aero engine application; International Symposium of Air Breathing Engines, September 4-9, Munich, Germany.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.