Rapid Diagnosis of Induction Motor Electrical Faults using Convolutional Autoencoder Feature Extraction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Electrical faults such as stator turns fault and broken rotor bars are among the frequently occurring failure modes in induction motors. This article presents a novel deep learning-based approach for the rapid diagnosis of these electrical faults within a short time window of 200 milliseconds. The extended Park's vector, calculated using three-phase supply currents, is chosen as the medium for fault detection. An unsupervised convolutional autoencoder is designed to detect features distinguishing healthy and faulty conditions. The developed features are supplied to a support vector machine to classify the fault conditions. The proposed approach is validated in a laboratory setup consisting of an inverter-fed induction motor operating under time-varying load and speed conditions with an accuracy > 95%.
How to Cite
##plugins.themes.bootstrap3.article.details##
autoencoder, convolutional autoencoder, induction motor, stator turn fault, broken rotor bar, support vector machine, diagnosis, electrical machines, current signals, feature extraction, condition based monitoring
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.