A Contribution to Online System-level Prognostics based on Adaptive Degradation Models
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Kamal Medjaher
Marcos Orchard
Abstract
Considering traditional model-based prognostics approaches, a previously defined model is required to estimate the system’s health state and then propagate it to predict the system remaining useful life (SRUL). Following a Bayesian framework, the result of this prior estimation is updated by in-field measurements without changing the model parameters. Nevertheless, in the case of prognostics at system-level, solely updating prior health state, based on the pre-determined model, is no longer sufficient because numerous mutual interactions between components cause multiple uncertainties in system degradation modeling, and then can lead to inaccurate SRUL prediction. Therefore, this paper proposes a new methodology for online joint uncertainty quantification and model estimation based on particle filtering (PF) and gradient descent (GD). In detail, the inoperability input-output model (IIM) is used to characterize system degradations considering interactions between components and effects of the mission profile; and then the inoperability of system components is estimated in a probabilistic manner using PF. In the case of consecutive discrepancy between the prior and posterior estimates of the system health state, GD is used to correct and to adapt the IIM parameters. To illustrate the effectiveness of the proposed methodology and its suitability for an online implementation, the Tennessee Eastman Process is investigated as a case study.
How to Cite
##plugins.themes.bootstrap3.article.details##
System-level prognostics ;, Online failure prognostics, Adaptive degradation model, Uncertainty quantification
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.