A Physics Based Deep Learning Technique for Prognostics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Remaining useful life (RUL) estimation is one of the most important aspects of prognostics and health management (PHM). Various deep learning (DL) based techniques have been developed and applied for the purposes of RUL estimation. One limitation of DL is the lack of physical interpretations as they are purely data driven models. Another limitation is the need for an exceedingly large amount of data to arrive at an acceptable pattern recognition performance for the purposes of RUL estimation. This research is aimed to overcome these limitations by developing physics based DL techniques for RUL prediction and validate the method with real run-to-failure datasets. The contribution of the research relies on creating hybrid DL based techniques as well as combining physics based approaches with DL techniques for effective RUL prediction.
How to Cite
##plugins.themes.bootstrap3.article.details##
Doctoral Symposium
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.