Novel Waveforms, Models, Algorithms for Cable Health Monitoring
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Cables in power generation and delivery are under high thermal stress cycles. Such high temperature can lead to cable insulation degradation, which will reduce the projected lifetime. Existing methods mainly focus on cable fault detection or insulation degradation mechanism. There is no existing tools for diagnosing the insulation degradation level and predicting the remaining useful life of the cable. The goal of my Ph.D. research is to develop reflectometry and data based approaches to monitor the health status of cables. The research will be conducted in three steps: (1) development of reflectometry based method to monitor the cable insulation degradation; (2) feature extraction and cable insulation degradation dynamic modeling based on the accelerated aging test data; (3) development of risksenstive particle filtering based fault diagnosis and prognosis algorithms for cable degradation; and (4) verification and validation the proposed solution with new experiment data and comparison with existing approaches.
How to Cite
##plugins.themes.bootstrap3.article.details##
Doctoral Symposium
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.