A Hybrid Approach of Data-Driven and Physics-based Methods for Estimation and Prediction of Fatigue Crack Growth
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper aims to develop a hybrid method to estimate the fatigue crack growth of an aluminum lap joint specimen with and without Lamb wave signals. The proposed method is validated on the two validation specimens (T7 and T8), using the training data sets of six different specimens (T1-T6). Each validation data set includes crack length estimation of few loading cycles with the given Lamb wave signals, followed by crack estimation without the signals. First, the crack length estimation using the signals for T7 and T8 sets was performed by the data-driven based method. A set of features was extracted from the preprocessed signals. Then, a random forest model was used to estimate crack lengths with grid search-based feature selection and hyper-parameter optimization. Next, different approaches were used to estimate the crack length without the signals, since T7 and T8 were tested under different loading conditions. Assuming that the homogeneous constant loading condition leads to a similar fatigue crack growth patterns, an ensemble prognostics approach with simplified particle filter-based weight update was used to predict the crack lengths of T7 specimen. In contrast, Walker’s equation model-based approach was chosen for T8 specimen as it was tested under a different loading condition. Considering the uncertainties of the model parameters, Walker’s equation models were generated by Monte Carlo methods. The average of generated models were used to predict the remaining crack lengths of T8 specimen. The proposed method led to Top 3 in 2019 PHM Conference Data Challenge.
How to Cite
##plugins.themes.bootstrap3.article.details##
data challenge
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.