A Survey of Flight Anomaly Detection Methods: Challenges and Opportunities
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Safety enhancement is a major goal of the aviation industry owing to the predicted increase in air travel. There is also the need to prevent fatalities, increase reliability and reduce monetary costs suffered as a result of delays and accidents that still occur. Accidents today are complex as a result of many causal factors acting alone but more often as a combination with other contributing factors. In tackling this trend, proactive measures have been put in place to find hazardous combinations that occur during flights in order to mitigate them before accidents occur. Flight Anomaly Detection (AD) methods are aimed at highlighting abnormal occurrences of a flight, that are different from the norm. As an improvement on the current state-of-the-art method, previous works have proposed different AD techniques for detection of previously unknown flight risks such as component faults, aircraft operational inefficiencies and some abnormal crew behaviour. However, current AD methods individually have limitations that prevent them from detecting certain significant anomalies in flight data. This paper surveys current flight AD approaches, their strengths and limitations as well as brings to light the benefits of a hybrid AD method to extend previous work and find safety-critical events, particularly those related to abnormal crew activity: a class of events known to amount for a substantial number of accidents/incidents today. It also highlights another emerging AD application opportunity, its challenges and how AD is beneficial in addressing them.
How to Cite
##plugins.themes.bootstrap3.article.details##
Anomaly Detection, Data Analytics, Flight Data Analysis
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.