Rolling Element Bearing Fault Diagnosis Based on Deep Belief Network and Principal Component Analysis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Rolling element bearings are critical components in industrial rotating machines. Faults and failures of bearings can cause degradation of machine performance or even a catastrophe. Bearing fault diagnosis is therefore essential and significant to safe and reliable operation of systems. For bearing condition monitoring, acoustic emission (AE) signals attract more and more attention due to its advantages on sensitivity over the extensively used vibration signal. In bearing fault diagnosis and prognosis, feature extraction is a critical and tough work, which always involves complex signal processing and computation. Moreover, features greatly rely on the characteristics, operating conditions, and type of data. With consideration of changes in operating conditions and increase of data complexity, traditional diagnosis approaches are insufficient in feature extraction and fault diagnosis. To address this problem, this paper proposes a Deep Belief Network (DBN) and Principal Component Analysis (PCA) based fault diagnosis approach using AE signal. This proposed approach combines the advantages of deep learning and statistical analysis, DBN automatically extracts features from AE signal, PCA is applied to dimensionality reduction. Different bearing fault modes are identified by least squares support vector machine (LS-SVM) using the extracted features. An experimental case is conducted with a tapered roller bearing to verify the proposed approach. Experimental results demonstrate that the proposed approach has excellent feature extraction ability and high fault classification accuracy.
How to Cite
##plugins.themes.bootstrap3.article.details##
Bearing, Diagnosis, Deep belief network, principal component analysis, least square support vector machine
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.