Health Index Generation Based on Compressed Sensing and Logistic Regression for Remaining Useful Life Prediction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Extracting suitable features from acquired data to accurately depict the current health state of a system is crucial in data driven condition monitoring and prediction. Usually, analogue sensor data is sampled at rates far exceeding the Nyquist-rate containing substantial amounts of redundancies and noise, imposing high computational loads due to the subsequent and necessary feature processing chain (generation, dimensionality reduction, rating and selection). To overcome these problems, Compressed Sensing can be used to sample directly to a compressed space, provided the signal at hand and the employed compression/measurement system meet certain criteria. Theory states, that during this compression step enough information is conserved, such that a reconstruction of the original signal is possible with high probability. The proposed approach however does not rely on reconstructed data for condition monitoring purposes, but uses directly the compressed signal representation as feature vector. It is hence assumed that enough information is conveyed by the compression for condition monitoring purposes. To fuse the compressed coefficients into one health index that can be used as input for remaining useful life prediction algorithms and is limited to a reasonable range between 1 and 0, a logistic regression approach is used. Run-to-failure data of three translational electromagnetic actuators is used to demonstrate the health index generation procedure. A comparison to the time domain ground truth signals obtained from Nyquist sampled coil current measurements shows reasonable agreement. I.e. underlying wear-out phenomena can be reproduced by the proposed approach enabling further investigation of the application of prognostic methods.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fault diagnosis, Preventive maintenance, Actuators, Data compression algorithms
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.