Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In this paper, we present a novel physics-informed neural network modeling approach for corrosion-fatigue. The hybrid approach is designed to merge physics- informed and data-driven layers within deep neural networks. The result is a cumulative damage model where the physics-informed layers are used to model the relatively well understood physics (crack growth through Paris law) and the data-driven layers account for the hard to model effects (bias in damage accumulation due to corrosion). A numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consists of predicting corrosion-fatigue of an Al 2024-T3 alloy used on panels of aircraft wing. Besides cyclic loading, the panels are also subjected to saline corrosion. The physics-informed neural network is trained using full observation of inputs (far-field loads, stress ratio and a corrosivity index – defined per airport) and very limited observation of outputs (crack length at inspection for only a small portion of the fleet). Results show that the physics-informed neural network is able to learn the correction in the original fatigue model due to corrosion and predictions are accurate enough for ranking damage in different airplanes in the fleet (which can be used to prioritizing inspection).
How to Cite
##plugins.themes.bootstrap3.article.details##
Physics-informed neural networks, corrosion-fatigue, machine learning
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.