Lifetime Model Development for Integration in Power Management of HEVs By Terms of Minimizing Fuel Consumption and Battery Degradation
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Along with increasingly frequent use of electric and hybrid electric vehicles, the constraints and demands placed on the them become stricter. The most noticeable challenge considering Hybrid Electric Vehicles (HEVs) is to provide an optimal
power flow between multiple electric sources alongside provided as less as possible aging of energy storage components. To provide efficient battery usage with respect to batteries lifetime, it becomes unavoidable to develop battery lifetime models, which do not only reflect the State-of-Heath (SoH) but also allow battery lifetime prediction. The lifetimeoriented battery models have to be integrated in power management. To be used efficiently and to provide optimal power split ensuring mitigation of battery degradation without sacrificing desired power consumption, accurate modeling of battery degradation is of utmost importance. This implies that gradual battery degradation, which is directly affected by applied loading profiles, has to be monitored and used as additional control input. Moreover, the lifetime model developed in this case has to provide model outputs also in the timeframe of power management. In this contribution, a machine state-based lifetime model for electric battery source is developed. In this particular case, different degradation states as well as machine state transitions are identified in accordance to current operating conditions. Here, the change in charging/ discharging rate (C-rate), overcharging/undercharging of the battery (depth-of-discharge), and the temperature are taken in consideration to define machine model states. The End-of-Lifetime (EoL) is defined as deviation between nominal and current ampere-hour (Ah)-throughput. The proposed machine state-based lifetime model is verified based on existing battery lifetime models using simulation setup. The developed lifetime model in this way serve as a prerequisite for
its integration into power management with an aim to provide the trade-off between aforementioned conflicting objectives; fuel consumption and battery degradation.
How to Cite
##plugins.themes.bootstrap3.article.details##
hybrid electric vehicles, electric vehicles, power management
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.