Bearing Condition Monitoring based on the Indicator Generated in Time-frequency Domain
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Most condition monitoring systems rely on system-driven generation of indicators or features for early fault detection. However, this strategy requires the prior knowledge on the system kinematics and/or exact structure parameters of monitored system. To address this problem, this paper presents a novel condition monitoring framework where the condition indicator is generated via data-driven method. In this framework, the time-frequency periodogram is extracted from raw vibration signal first. Then, the acquired time-frequency periodogram is mapped by pseudo Perron vector, which is learned from vibration data, to generate the condition indicator. Finally, the bearing can be monitored via analyzing this indicator using gaussian based control chart. Based on experimental results on a publicly-available database, we show the effectiveness of presented framework for early fault detection
in the continuous operation of rolling bearing, indicating its great potentials in real engineering applications.
How to Cite
##plugins.themes.bootstrap3.article.details##
Bearing condition motioring, Fault detection, Condition indicator, Time-frequency analysis
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.