Electronic Circuit PHM with No Data
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Operational data from the target system is widely considered a pre-requisite for implementation of PHM, as it used as training data. Often this data is not available to PHM practitioners because health monitoring capabilities may not be installed in legacy systems unless there is a guarantee that a PHM framework will be viable/profitable. This research presents an approach in which PHM can be implemented without any operational data and is generic enough to be applied to any electronic circuit provided a simulation model of the system with acceptable fidelity can be developed. The research also introduces the Space-Filling Design, which can be used to generate the training data in a systematic, statistically valid framework, and is especially valuable for complex circuit with a large number of components. This design provides sufficient coverage of the parametric design space to be representative of the unavailable operational data, as well as incorporating the effects of parameter interaction on the simulated response of the system. Most PHM studies in literature ignore the effect of the degradation of interacting components. We show, how such an assumption can lead to incorrect fault diagnosis/RUL estimation and propose methods to screen for two-way and higher order interactions. Finally, we use various deep learning approaches in conjunction with physics-of-failure models for individual components to diagnose circuit faults and estimate circuit RUL. This simulation-based fusion prognostics approach is a holistic framework for all types of electronic circuits.
How to Cite
##plugins.themes.bootstrap3.article.details##
Doctoral Symposium
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.