Automated Hyper-parameter Tuning for Machine Learning Models in Machine Health Prognostics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Recent studies have revealed the success of data-driven machine health monitoring, which motivates the use of machine learning models in machine health prognostic tasks. While the machine learning approach to health monitoring is gaining importance, the construction of machine learning models is often impeded by the difficulty in choosing the underlying hyper-parameter configuration (HP-config), which governs the construction of the machine learning model. While an effective choice of HP-config can be achieved with human effort, such an effort is often time consuming and requires domain knowledge. In this paper, we consider the use of Bayesian optimization algorithms, which automate an effective choice of HP-config by solving the associated hyperparameter optimization problem. Numerical experiments on the data from PHM 2016 Data Challenge demonstrate the salience of the proposed automatic framework, and exhibit improvement over default HP-configs in standard machine learning packages or chosen by a human agent.
How to Cite
##plugins.themes.bootstrap3.article.details##
Machine Learning, Data-driven prognostic, automation
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.