A Data-driven Approach to Material Removal Rate Prediction in Chemical Mechanical Polishing
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Chemical mechanical polishing (CMP) has been widely used in the semiconductor sector for creating planar surfaces with the combination of chemical and mechanical forces. CMP is very complex because several chemical and mechanical phenomena (e.g., surface kinetics, contact mechanics, stress mechanics, and tribochemistry) are involved. Due to the complexity of the CMP process, it is very challenging to predict material removal rate (MRR) with sufficient accuracy. While physics-based methods have been introduced to predict MRR, little research has been reported on data-driven predictive modeling of MRR in the CMP process. This paper presents a novel decision tree-based ensemble learning algorithm that trains a predictive model of MRR on condition monitoring data. A stacking technique is used to combine three decision tree-based learning algorithms, including the random forests (RF), gradient boosting trees (GBT), and extremely randomized trees (ERT). The proposed method is demonstrated on the data collected from a wafer CMP tool that removes material from the surface of the wafer. Experimental results have shown that the decision tree-based ensemble learning algorithm can predict MRR in the CMP process with very high accuracy.
How to Cite
##plugins.themes.bootstrap3.article.details##
Smart Manufacturing, Material Removal Rate Prediction, Chemical Mechanical Polishing
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.