Generic Hybrid Models for Prognostics of Complex Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Hybrid models combining physical knowledge and machine learning show promise for obtaining accurate and robust prognostic models. However, despite the increased interest in hybrid models in recent years, the proposed solutions tend to be domain-specific. As a result, there is no compelling strategy of what, where, and how physics-derived knowledge can be integrated into deep learning models depending on the available representation of physical knowledge and the quality of data for the development of prognostic models for complex systems. This Ph.D. project aims to develop a general strategy for hybridizing prognostic models by exploring multiple methods to incorporate physical knowledge at various stages of the learning algorithm. The project will prioritize expert knowledge as the primary source of information, while domain-specific knowledge will serve as an additional feature when applicable.
How to Cite
##plugins.themes.bootstrap3.article.details##
Hybrid models, Prognostics
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.