References
Antoni, J. (2007). Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions. Journal of Sound and Vibration, 304(3–5), 497–529. https://doi.org/10.1016/j.jsv.2007.02.029
Buzzoni, M., D’Elia, G., & Cocconcelli, M. (2020). A tool for validating and benchmarking signal processing techniques applied to machine diagnosis. Mechanical Systems and Signal Processing, 139, 106618. https://doi.org/10.1016/j.ymssp.2020.106618
Chen, Y., Peng, G., Xie, C., Zhang, W., Li, C., & Liu, S. (2018). ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis. Neurocomputing, 294, 61–71. https://doi.org/10.1016/j.neucom.2018.03.014
Chi, F., Yang, X., Shao, S., & Zhang, Q. (2022). Bearing Fault Diagnosis for Time-Varying System Using Vibration–Speed Fusion Network Based on Self-Attention and Sparse Feature Extraction. Machines, 10(10), 948. https://doi.org/10.3390/machines10100948
Ciani, L., Galar, D., & Patrizi, G. (2019). Improving context awareness reliability estimation for a wind turbine using an RBD model. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6. https://doi.org/10.1109/I2MTC.2019.8827041
Cocconcelli, M., Rubini, R., Zimroz, R., & Bartelmus, W. (2011). Diagnostics of ball bearings in varying-speed motors by means of Artificial Neural Networks. 8th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 2011, CM 2011/MFPT 2011, 2, 760 – 771. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905727322&partnerID=40&md5=9502865e8a2f88027b67d77bf5ec422b
Farahani, H. S., Fatehi, A., Nadali, A., & Shoorehdeli, M. A. (2021). Domain Adversarial Neural Network Regression to design transferable soft sensor in a power plant. Computers in Industry, 132, 103489. https://doi.org/https://doi.org/10.1016/j.compind.2021.103489
Farhat, M. H., Chiementin, X., Chaari, F., Bolaers, F., & Haddar, M. (2021). Digital twin-driven machine learning: ball bearings fault severity classification. Measurement Science and Technology, 32(4), 044006. https://doi.org/10.1088/1361-6501/abd280
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V. (2016). Domain-Adversarial Training of Neural Networks.
Gryllias, K. C., & Antoniadis, I. A. (2012). A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Engineering Applications of Artificial Intelligence, 25(2), 326–344. https://doi.org/10.1016/j.engappai.2011.09.010
Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016
Leturiondo, U., Salgado, O., Ciani, L., Galar, D., & Catelani, M. (2017). Architecture for hybrid modelling and its application to diagnosis and prognosis with missing data. Measurement, 108, 152–162. https://doi.org/10.1016/j.measurement.2017.02.003
Liu, C., & Gryllias, K. (2022). Simulation-Driven Domain Adaptation for Rolling Element Bearing Fault Diagnosis. IEEE Transactions on Industrial Informatics, 18(9), 5760–5770. https://doi.org/10.1109/TII.2021.3103412
Liu, C., Mauricio, A., Qi, J., Peng, D., & Gryllias, K. (2020). Domain Adaptation Digital Twin for Rolling Element Bearing Prognostics.
Liu, J., Cao, H., Su, S., & Chen, X. (2023). Simulation-Driven Subdomain Adaptation Network for bearing fault diagnosis with missing samples. Engineering Applications of Artificial Intelligence, 123. https://doi.org/10.1016/j.engappai.2023.106201
McFadden, P. D., & Smith, J. D. (1984). Model for the vibration produced by a single-point defect in a rolling element bearing. Journal of Sound and Vibration, 96(1), 69–82. https://doi.org/10.1016/0022-460X(84)90595-9
Ooijevaar, T. H., Pichler, K., Di, Y., Devos, S., Volckaert, B., Hoecke, S. Van, & Hesch, C. (2019). Smart Machine Maintenance Enabled by a Condition Monitoring Living Lab. IFAC-PapersOnLine, 52(15), 376–381. https://doi.org/10.1016/j.ifacol.2019.11.704
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
Randall, R. B., & Antoni, J. (2011). Rolling element bearing diagnostics—A tutorial. Mechanical Systems and Signal Processing, 25(2), 485–520. https://doi.org/10.1016/j.ymssp.2010.07.017
Rezamand, M., Kordestani, M., Orchard, M. E., Carriveau, R., Ting, D. S.-K., & Saif, M. (2021). Improved Remaining Useful Life Estimation of Wind Turbine Drivetrain Bearings Under Varying Operating Conditions. IEEE Transactions on Industrial Informatics, 17(3), 1742–1752. https://doi.org/10.1109/TII.2020.2993074
Salunkhe, V. G., & Desavale, R. G. (2021). An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 4(3). https://doi.org/10.1115/1.4049938
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need.
Xia, B., Wang, K., Xu, A., Zeng, P., Yang, N., & Li, B. (2022). Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation. IEEE Transactions on Instrumentation and Measurement, 71, 1–13. https://doi.org/10.1109/TIM.2022.3158996
Xue, L., Li, N., Lei, Y., & Li, N. (2017). Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions. Materials, 10(6), 675. https://doi.org/10.3390/ma10060675